
cx𝑂𝑟𝑎𝑐𝑙𝑒
Release 6.4.0

July 09, 2018

Contents

1 cx_Oracle 6 Installation 3
1.1 Overview . 4
1.2 Quick Start cx_Oracle Installation . 4
1.3 Oracle Client and Oracle Database Interoperability . 5
1.4 Installing cx_Oracle on Linux . 6
1.5 Installing cx_Oracle on Oracle Linux . 8
1.6 Installing cx_Oracle on Windows . 8
1.7 Installing cx_Oracle on macOS . 10
1.8 Install Using GitHub . 11
1.9 Install Using Source from PyPI . 11
1.10 Upgrading from cx_Oracle 5 . 11
1.11 Installing cx_Oracle 5.3 . 11
1.12 Troubleshooting . 11

2 Module Interface 13
2.1 Constants . 16
2.2 Types . 23
2.3 Exceptions . 26
2.4 Exception handling . 26

3 Connection Object 29

4 Cursor Object 37

5 Variable Objects 45

6 SessionPool Object 47

7 Subscription Object 51
7.1 Message Objects . 52
7.2 Message Table Objects . 53
7.3 Message Row Objects . 53
7.4 Message Query Objects . 53

8 LOB Objects 55

9 Object Type Objects 57
9.1 Object Objects . 57

i

10 Advanced Queuing 59
10.1 Dequeue Options . 59
10.2 Enqueue Options . 60
10.3 Message Properties . 60

11 What’s New 63
11.1 cx_Oracle 6.0 . 63

12 cx_Oracle Release Notes 67
12.1 6.x releases . 67
12.2 5.x releases . 75
12.3 Older releases . 81

13 License 93

14 Indices and tables 95

Python Module Index 97

ii

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

cx_Oracle is a module that enables access to Oracle Database and conforms to the Python database API specification.
This module is currently tested against Oracle Client 11.2, 12.1 and 12.2 and Python 2.7, 3.4, 3.5 and 3.6.

cx_Oracle is distributed under an open-source license (the BSD license).

Contents:

Contents 1

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

2 Contents

CHAPTER 1

cx_Oracle 6 Installation

• Overview

• Quick Start cx_Oracle Installation

• Oracle Client and Oracle Database Interoperability

• Installing cx_Oracle on Linux

– Install cx_Oracle

– Install Oracle Client

* Oracle Instant Client Zip Files

* Oracle Instant Client RPMs

* Local Database or Full Oracle Client

• Installing cx_Oracle on Oracle Linux

• Installing cx_Oracle on Windows

– Install cx_Oracle

– Install Oracle Client

* Oracle Instant Client Zip Files

* Local Database or Full Oracle Client

• Installing cx_Oracle on macOS

– Install cx_Oracle

– Install Oracle Instant Client

• Install Using GitHub

• Install Using Source from PyPI

3

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

• Upgrading from cx_Oracle 5

• Installing cx_Oracle 5.3

• Troubleshooting

1.1 Overview

To use cx_Oracle 6 with Python and Oracle Database you need:

• Python 2.7 or 3.4 and higher. Older versions of cx_Oracle may work with older versions of Python.

• Oracle client libraries. These can be from the free Oracle Instant Client, or those included in Oracle Database if
Python is on the same machine as the database. Oracle client libraries versions 12.2, 12.1 and 11.2 are supported
on Linux, Windows and macOS. Users have also reported success with other platforms.

• An Oracle Database. Oracle’s standard client-server version interoperability allows cx_Oracle to connect to
both older and newer databases.

1.2 Quick Start cx_Oracle Installation

• An installation of Python is needed. Python 2.7 and Python 3.4 and higher are supported by cx_Oracle 6.

• Install cx_Oracle from PyPI with:

python -m pip install cx_Oracle --upgrade

Note: if a binary wheel package is not available for your platform, the source package will be downloaded
instead. This will be compiled and the resulting binary installed.

• Add Oracle 12.2, 12.1 or 11.2 client libraries to your operating system library search path such as PATH on
Windows or LD_LIBRARY_PATH on Linux. On macOS move the files to ~/lib or /usr/local/lib.

– If your database is remote, then download and unzip the client libraries from the free Oracle Instant Client
“Basic” or “Basic Light” package for your operating system architecture.

Instant Client on Windows requires an appropriate Microsoft Windows Redistributables. On Linux, the
libaio (sometimes called libaio1) package is needed.

– Alternatively use the client libraries already available in a locally installed database such as the free Oracle
XE release.

Version 12.2 client libraries can connect to Oracle Database 11.2 or greater. Version 12.1 client libraries can
connect to Oracle Database 10.2 or greater. Version 11.2 client libraries can connect to Oracle Database 9.2 or
greater.

The database abstraction layer in cx_Oracle is ODPI-C, which means that the ODPI-C installation instructions
can be useful to review.

• Create a script like the one below:

myscript.py

from __future__ import print_function

import cx_Oracle
(continues on next page)

4 Chapter 1. cx_Oracle 6 Installation

http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
https://www.python.org/downloads
https://pypi.python.org/pypi/cx_Oracle
http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
https://oracle.github.io/odpi/doc/installation.html#windows
http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
https://github.com/oracle/odpi
https://oracle.github.io/odpi/doc/installation.html

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

(continued from previous page)

Connect as user "hr" with password "welcome" to the "oraclepdb" service running
→˓on this computer.
connection = cx_Oracle.connect("hr", "welcome", "localhost/orclpdb")

cursor = connection.cursor()
cursor.execute("""

SELECT first_name, last_name
FROM employees
WHERE department_id = :did AND employee_id > :eid""",
did = 50,
eid = 190)

for fname, lname in cursor:
print("Values:", fname, lname)

Locate your Oracle Database username and password, and the database connection string. The connection string
is commonly of the format hostname/servicename, using the hostname where the database is running,
and the service name of the Oracle Database instance.

Substitute your username, password and connection string in the code. Run the Python script, for example:

python myscript.py

You can learn how to use cx_Oracle from the API documentation and samples.

If you run into installation trouble, check out the section on Troubleshooting.

1.3 Oracle Client and Oracle Database Interoperability

cx_Oracle requires Oracle Client libraries. The libraries provide the necessary network connectivity to access an Ora-
cle Database instance. They also provide basic and advanced connection management and data features to cx_Oracle.

The simplest way to get Oracle Client libraries is to install the free Oracle Instant Client “Basic” or “Basic Light”
package. The libraries are also available in any Oracle Database installation or full Oracle Client installation.

Oracle’s standard client-server network interoperability allows connections between different versions of Oracle Client
libraries and Oracle Database. For certified configurations see Oracle Support’s Doc ID 207303.1. In summary, Oracle
Client 12.2 can connect to Oracle Database 11.2 or greater. Oracle Client 12.1 can connect to Oracle Database 10.2
or greater. Oracle Client 11.2 can connect to Oracle Database 9.2 or greater. The technical restrictions on creating
connections may be more flexible. For example Oracle Client 12.2 can successfully connect to Oracle Database 10.2.

cx_Oracle uses the shared library loading mechanism available on each supported platform to load the Oracle Client
libraries at runtime. It does not need to be rebuilt for different versions of the libraries. Since a single cx_Oracle binary
can use different client versions and also access multiple database versions, it is important your application is tested
in your intended release environments. Newer Oracle clients support new features, such as the oraaccess.xml external
configuration file available with 12.1 or later clients, and session pool enhancements to dead connection detection in
12.2 clients.

The cx_Oracle function clientversion() can be used to determine which Oracle Client version is in use and
the attribute Connection.version can be used to determine which Oracle Database version a connection is
accessing. These can then be used to adjust application behavior accordingly. Attempts to use some Oracle features
that are not supported by a particular client/server combination may result in runtime errors. These include:

• when attempting to access attributes that are not supported by the current Oracle Client library you will get the
error “ORA-24315: illegal attribute type”

1.3. Oracle Client and Oracle Database Interoperability 5

https://github.com/oracle/python-cx_Oracle/blob/master/samples
http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
https://support.oracle.com/epmos/faces/DocumentDisplay?id=207303.1
https://docs.oracle.com/database/122/LNOCI/more-oci-advanced-topics.htm#LNOCI73052
http://docs.oracle.com/database/122/LNOCI/release-changes.htm#LNOCI005

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

• when attempting to use implicit results with Oracle Client 11.2 against Oracle Database 12c you will get the
error “ORA-29481: Implicit results cannot be returned to client”

• when attempting to get array DML row counts with Oracle Client 11.2 you will get the error “DPI-1013: not
supported”

1.4 Installing cx_Oracle on Linux

This section discusses the generic installation method on Linux. Using Python and cx_Oracle RPM packages on
Oracle Linux is discussed in Installing cx_Oracle on Oracle Linux.

1.4.1 Install cx_Oracle

The generic way to install cx_Oracle on Linux is to use Python’s Pip package to install cx_Oracle from PyPI:

python -m pip install cx_Oracle --upgrade

This will download and install a pre-compiled binary if one is available for your architecture. If a pre-compiled binary
is not available, the source will be downloaded, compiled, and the resulting binary installed. Compiling cx_Oracle
requires the Python.h header file. If you are using the default python package, this file is in the python-devel
package or equivalent.

1.4.2 Install Oracle Client

Using cx_Oracle requires Oracle Client libraries to be installed. These provide the necessary network connectivity
allowing cx_Oracle to access an Oracle Database instance. Oracle Client versions 12.2, 12.1 and 11.2 are supported.

• If your database is remote, then download the free Oracle Instant Client “Basic” or “Basic Light” package for
your operating system architecture. Use the RPM or ZIP packages, based on your preferences.

• Alternatively use the client libraries already available in a locally installed database such as the free Oracle XE
release.

Oracle Instant Client Zip Files

To use cx_Oracle with Oracle Instant Client zip files:

1. Download an Oracle 11.2, 12.1 or 12.2 “Basic” or “Basic Light” zip file: 64-bit or 32-bit, matching your Python
architecture.

2. Unzip the package into a single directory that is accessible to your application. For example:

mkdir -p /opt/oracle
cd /opt/oracle
unzip instantclient-basic-linux.x64-12.2.0.1.0.zip

3. Install the libaio package with sudo or as the root user. For example:

sudo yum install libaio

On some Linux distributions this package is called libaio1 instead.

4. If there is no other Oracle software on the machine that will be impacted, permanently add Instant Client to the
runtime link path. For example, with sudo or as the root user:

6 Chapter 1. cx_Oracle 6 Installation

http://pip.readthedocs.io/en/latest/installing/
https://pypi.python.org/pypi/cx_Oracle
https://pypi.python.org/pypi/cx_Oracle
http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxsoft-082809.html

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

sudo sh -c "echo /opt/oracle/instantclient_12_2 > /etc/ld.so.conf.d/oracle-
→˓instantclient.conf"
sudo ldconfig

Alternatively, set the environment variable LD_LIBRARY_PATH to the appropriate directory for the Instant
Client version. For example:

export LD_LIBRARY_PATH=/opt/oracle/instantclient_12_2:$LD_LIBRARY_PATH

5. If you intend to co-locate optional Oracle configuration files such as tnsnames.ora, sqlnet.ora or
oraaccess.xml with Instant Client, then create a network/admin subdirectory. For example:

mkdir -p /opt/oracle/instantclient_12_2/network/admin

This is the default Oracle configuration directory for executables linked with this Instant Client.

Alternatively, Oracle configuration files can be put in another, accessible directory. Then set the environment
variable TNS_ADMIN to that directory name.

Oracle Instant Client RPMs

To use cx_Oracle with Oracle Instant Client RPMs:

1. Download an Oracle 11.2, 12.1 or 12.2 “Basic” or “Basic Light” RPM: 64-bit or 32-bit, matching your Python
architecture.

2. Install the downloaded RPM with sudo or as the root user. For example:

sudo yum install oracle-instantclient12.2-basic-12.2.0.1.0-1.x86_64.rpm

Yum will automatically install required dependencies, such as libaio.

3. If there is no other Oracle software on the machine that will be impacted, permanently add Instant Client to the
runtime link path. For example, with sudo or as the root user:

sudo sh -c "echo /usr/lib/oracle/12.2/client64/lib > /etc/ld.so.conf.d/oracle-
→˓instantclient.conf"
sudo ldconfig

Alternatively, set the environment variable LD_LIBRARY_PATH to the appropriate directory for the Instant
Client version. For example:

export LD_LIBRARY_PATH=/usr/lib/oracle/12.2/client64/lib:$LD_LIBRARY_PATH

4. If you intend to co-locate optional Oracle configuration files such as tnsnames.ora, sqlnet.ora or
oraaccess.xml with Instant Client, then create a network/admin subdirectory under lib/. For ex-
ample:

sudo mkdir -p /usr/lib/oracle/12.2/client64/lib/network/admin

This is the default Oracle configuration directory for executables linked with this Instant Client.

Alternatively, Oracle configuration files can be put in another, accessible directory. Then set the environment
variable TNS_ADMIN to that directory name.

1.4. Installing cx_Oracle on Linux 7

http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html
http://www.oracle.com/technetwork/topics/linuxsoft-082809.html

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Local Database or Full Oracle Client

cx_Oracle applications can use Oracle Client 11.2, 12.1 or 12.2 libraries from a local Oracle Database or full Oracle
Client installation.

The libraries must be either 32-bit or 64-bit, matching your Python architecture.

1. Set required Oracle environment variables by running the Oracle environment script. For example:

source /usr/local/bin/oraenv

For Oracle Database XE, run:

source /u01/app/oracle/product/11.2.0/xe/bin/oracle_env.sh

2. Optional Oracle configuration files such as tnsnames.ora, sqlnet.ora or oraaccess.xml can be
placed in $ORACLE_HOME/network/admin.

Alternatively, Oracle configuration files can be put in another, accessible directory. Then set the environment
variable TNS_ADMIN to that directory name.

1.5 Installing cx_Oracle on Oracle Linux

Python packages are available for Oracle Linux from Oracle’s public yum repository. Various versions of Python are
easily installed. Packages for cx_Oracle are also available, making it easy to keep up to date.

Installation instructions are at Oracle Linux for Python Developers.

1.6 Installing cx_Oracle on Windows

1.6.1 Install cx_Oracle

Use Python’s Pip package to install cx_Oracle from PyPI:

python -m pip install cx_Oracle --upgrade

This will download and install a pre-compiled binary if one is available for your architecture. If a pre-compiled binary
is not available, the source will be downloaded, compiled, and the resulting binary installed.

1.6.2 Install Oracle Client

Using cx_Oracle requires Oracle Client libraries to be installed. These provide the necessary network connectivity
allowing cx_Oracle to access an Oracle Database instance. Oracle Client versions 12.2, 12.1 and 11.2 are supported.

• If your database is remote, then download the free Oracle Instant Client “Basic” or “Basic Light” package for
your operating system architecture.

• Alternatively use the client libraries already available in a locally installed database such as the free Oracle XE
release.

8 Chapter 1. cx_Oracle 6 Installation

http://yum.oracle.com/
https://yum.oracle.com/oracle-linux-python.html
http://pip.readthedocs.io/en/latest/installing/
https://pypi.python.org/pypi/cx_Oracle
https://pypi.python.org/pypi/cx_Oracle
http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Oracle Instant Client Zip Files

To use cx_Oracle with Oracle Instant Client zip files:

1. Download an Oracle 11.2, 12.1 or 12.2 “Basic” or “Basic Light” zip file: 64-bit or 32-bit, matching your Python
architecture.

2. Unzip the package into a single directory that is accessible to your application, for example
C:\oracle\instantclient_12_2.

3. Set the environment variable PATH to include the path that you created in step 2. For example, on Windows 7,
update PATH in Control Panel -> System -> Advanced System Settings -> Advanced -> Environment Variables
-> System Variables -> PATH. Alternatively use SET to change your PATH in each command prompt window
before you run python.

If you have other Oracle software installed, then when you use Python you will need to make sure that the
Instant Client directory, e.g. C:\oracle\instantclient_12_2, occurs in PATH before any other Oracle
directories.

Restart any open command prompt windows.

4. Oracle Instant Client libraries require a Visual Studio redistributable with a 64-bit or 32-bit architecture to match
Instant Client’s architecture. Each Instant Client version requires a different redistributable version:

• For Instant Client 11.2 install VS 2005 64-bit or VS 2005 32-bit

• For Instant Client 12.1 install VS 2010

• For Instant Client 12.2 install VS 2013

5. If you intend to co-locate optional Oracle configuration files such as tnsnames.ora, sqlnet.ora
or oraaccess.xml with Instant Client, then create a network\admin subdirectory, for example
C:\oracle\instantclient_12_2\network\admin.

This is the default Oracle configuration directory for executables linked with this Instant Client.

Alternatively, Oracle configuration files can be put in another, accessible directory. Then set the environment
variable TNS_ADMIN to that directory name.

Local Database or Full Oracle Client

cx_Oracle applications can use Oracle Client 11.2, 12.1 or 12.2 libraries libraries from a local Oracle Database or full
Oracle Client.

The Oracle libraries must be either 32-bit or 64-bit, matching your Python architecture.

1. Set the environment variable PATH to include the path that contains OCI.dll, if it is not already set. For exam-
ple, on Windows 7, update PATH in Control Panel -> System -> Advanced System Settings -> Advanced ->
Environment Variables -> System Variables -> PATH.

Restart any open command prompt windows.

2. Optional Oracle configuration files such as tnsnames.ora, sqlnet.ora or oraaccess.xml can be
placed in the network/admin subdirectory of the Oracle Database software installation.

Alternatively, Oracle configuration files can be put in another, accessible directory. Then set the environment
variable TNS_ADMIN to that directory name.

1.6. Installing cx_Oracle on Windows 9

http://www.oracle.com/technetwork/topics/winx64soft-089540.html
http://www.oracle.com/technetwork/topics/winsoft-085727.html
https://www.microsoft.com/en-us/download/details.aspx?id=18471
https://www.microsoft.com/en-ca/download/details.aspx?id=3387
https://support.microsoft.com/en-us/kb/2977003#bookmark-vs2010
https://support.microsoft.com/en-us/kb/2977003#bookmark-vs2013

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

1.7 Installing cx_Oracle on macOS

Make sure you are not using the bundled Python. This has restricted entitlements and will fail to load Oracle client
libraries. Instead use Homebrew or Python.org.

1.7.1 Install cx_Oracle

Use Python’s Pip package to install cx_Oracle from PyPI:

python -m pip install cx_Oracle --upgrade

The source will be downloaded, compiled, and the resulting binary installed.

1.7.2 Install Oracle Instant Client

cx_Oracle requires Oracle Client libraries, which are found in Oracle Instant Client for macOS. These provide the
necessary network connectivity allowing cx_Oracle to access an Oracle Database instance. Oracle Client versions
12.2, 12.1 and 11.2 are supported.

To use cx_Oracle with Oracle Instant Client zip files:

1. Download the 11.2, 12.1 or 12.2 “Basic” or “Basic Light” zip file from here. Choose either a 64-bit or 32-bit
package, matching your Python architecture.

2. Unzip the package into a single directory that is accessible to your application. For example:

mkdir -p /opt/oracle
unzip instantclient-basic-macos.x64-12.2.0.1.0.zip

3. Add links to $HOME/lib or /usr/local/lib to enable applications to find the library. For example:

mkdir ~/lib
ln -s /opt/oracle/instantclient_12_2/libclntsh.dylib.12.1 ~/lib/

Alternatively, copy the required OCI libraries. For example:

mkdir ~/lib
cp /opt/oracle/instantclient_12_2/{libclntsh.dylib.12.1,libclntshcore.dylib.12.1,
→˓libons.dylib,libnnz12.dylib,libociei.dylib} ~/lib/

For Instant Client 11.2, the OCI libraries must be copied. For example:

mkdir ~/lib
cp /opt/oracle/instantclient_11_2/{libclntsh.dylib.11.1,libnnz11.dylib,libociei.
→˓dylib} ~/lib/

4. If you intend to co-locate optional Oracle configuration files such as tnsnames.ora, sqlnet.ora or
oraaccess.xml with Instant Client, then create a network/admin subdirectory. For example:

mkdir -p /opt/oracle/instantclient_12_2/network/admin

This is the default Oracle configuration directory for executables linked with this Instant Client.

Alternatively, Oracle configuration files can be put in another, accessible directory. Then set the environment
variable TNS_ADMIN to that directory name.

10 Chapter 1. cx_Oracle 6 Installation

https://brew.sh
https://www.python.org/downloads
http://pip.readthedocs.io/en/latest/installing/
https://pypi.python.org/pypi/cx_Oracle
http://www.oracle.com/technetwork/topics/intel-macsoft-096467.html

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

1.8 Install Using GitHub

In order to install using the source on GitHub, use the following commands:

git clone https://github.com/oracle/python-cx_Oracle.git cx_Oracle
cd cx_Oracle
git submodule init
git submodule update
python setup.py install

Note that if you download a source zip file directly from GitHub then you will also need to download an ODPI-C
source zip file and extract it inside the directory called “odpi”.

1.9 Install Using Source from PyPI

The source package can be downloaded manually from PyPI and extracted, after which the following commands
should be run:

python setup.py build
python setup.py install

1.10 Upgrading from cx_Oracle 5

If you are upgrading from cx_Oracle 5 note these installation changes:

• When using Oracle Instant Client, you should not set ORACLE_HOME.

• On Linux, cx_Oracle 6 no longer uses Instant Client RPMs automatically. You must set LD_LIBRARY_PATH
or use ldconfig to locate the Oracle client library.

• PyPI no longer allows Windows installers or Linux RPMs to be hosted. Use the supplied cx_Oracle Wheels
instead.

1.11 Installing cx_Oracle 5.3

If you require cx_Oracle 5.3, download a Windows installer from PyPI or use python -m pip install
cx-oracle==5.3 to install from source.

Very old versions of cx_Oracle can be found in the files section at SourceForce.

1.12 Troubleshooting

If installation fails:

• Use option -v with pip. Review your output and logs. Try to install using a different method. Google anything
that looks like an error. Try some potential solutions.

• Was there a network connection error? Do you need to see the environment variables http_proxy and/or
https_proxy?

1.8. Install Using GitHub 11

https://github.com/oracle/odpi
https://pypi.python.org/pypi/cx_Oracle
https://pypi.python.org/pypi/cx_Oracle
https://sourceforge.net/projects/cx-oracle/files/

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

• Do you get the error “No module named pip”? The pip module is builtin to Python from version 2.7.9
but is sometimes removed by the OS. Use the venv module (builtin to Python 3.x) or virtualenv module (Python
2.x) instead.

• Do you get the error “fatal error: dpi.h: No such file or directory” when building
from source code? Ensure that your source installation has a subdirectory called “odpi” containing files. If
missing, review the section on Install Using GitHub.

If importing cx_Oracle fails:

• Do you get the error “DPI-1047: Oracle Client library cannot be loaded”?

– Check that Python, cx_Oracle and your Oracle Client libraries are all 64-bit or all 32-bit. The DPI-1047
message will tell you whether the 64-bit or 32-bit Oracle Client is needed for your Python.

– On Windows, restart your command prompt and use set PATH to check the environment variable has
the correct Oracle Client listed before any other Oracle directories.

– On Windows, use the DIR command on the directory set in PATH. Verify that OCI.DLL exists there.

– On Windows, check that the correct Windows Redistributables have been installed.

– On Linux, check the LD_LIBRARY_PATH environment variable contains the Oracle Client library direc-
tory.

– On macOS, make sure Oracle Instant Client is in ~/lib or /usr/local/lib and that you are not
using the bundled Python (use Homebrew or Python.org instead).

• If you have both Python 2 and 3 installed, make sure you are using the correct python and pip (or python3 and
pip3) executables.

12 Chapter 1. cx_Oracle 6 Installation

https://oracle.github.io/odpi/doc/installation.html#windows
https://brew.sh
https://www.python.org/downloads

CHAPTER 2

Module Interface

cx_Oracle.__future__
Special object which contains attributes which control the behavior of cx_Oracle, allowing for opting in for new
features. The following attributes are supported:

• ctx_mgr_close – if this value is True, the context manager will close the connection when the block is
completed. This will become the default behavior in cx_Oracle 7.

• dml_ret_array_val – if this value is True, variables bound to a DML returning statement (and have not had
any values set on them) will return an array. This will become the default behavior in cx_Oracle 7.

All other attributes will silently ignore being set and will always appear to have the value None.

Note: This method is an extension to the DB API definition.

New in version 6.2.

cx_Oracle.Binary(string)
Construct an object holding a binary (long) string value.

cx_Oracle.clientversion()
Return the version of the client library being used as a 5-tuple. The five values are the major version, minor
version, update number, patch number and port update number.

Note: This method is an extension to the DB API definition.

cx_Oracle.Connection(user=None, password=None, dsn=None, mode=None, handle=None,
pool=None, threaded=False, events=False, cclass=None, purity=None,
newpassword=None, encoding=None, nencoding=None, edition=None,
appcontext=[], tag=None, matchanytag=False, shardingkey=[], supershard-
ingkey=[])

13

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

cx_Oracle.connect(user=None, password=None, dsn=None, mode=None, handle=None, pool=None,
threaded=False, events=False, cclass=None, purity=None, newpassword=None,
encoding=None, nencoding=None, edition=None, appcontext=[], tag=None,
matchanytag=None, shardingkey=[], supershardingkey=[])

Constructor for creating a connection to the database. Return a connection object. All parameters are optional
and can be specified as keyword parameters.

The dsn (data source name) is the TNS entry (from the Oracle names server or tnsnames.ora file) or is a string
like the one returned from makedsn(). If only one parameter is passed, a connect string is assumed which is to
be of the format user/password@dsn, the same format accepted by Oracle applications such as SQL*Plus.

If the mode is specified, it must be one of SYSDBA, SYSASM , SYSOPER, SYSBKP, SYSDGD, SYSKMT or
SYSRAC which are defined at the module level; otherwise, it defaults to the normal mode of connecting.

If the handle is specified, it must be of type OCISvcCtx* and is only of use when embedding Python in an
application (like PowerBuilder) which has already made the connection.

The pool parameter is expected to be a session pool object and the use of this parameter is the equivalent of
calling SessionPool.acquire(). Parameters not acecpted by that method are ignored.

The threaded parameter is expected to be a boolean expression which indicates whether or not Oracle should
wrap accesses to connections with a mutex. Doing so in single threaded applications imposes a performance
penalty of about 10-15% which is why the default is False.

The events parameter is expected to be a boolean expression which indicates whether or not to initialize Oracle
in events mode. This is required for continuous query notification and high availablity event notifications.

The cclass parameter is expected to be a string and defines the connection class for database resident connection
pooling (DRCP).

The purity parameter is expected to be one of ATTR_PURITY_NEW , ATTR_PURITY_SELF, or
ATTR_PURITY_DEFAULT.

The newpassword parameter is expected to be a string if specified and sets the password for the logon during
the connection process.

The encoding parameter is expected to be a string if specified and sets the encoding to use for regular database
strings. If not specified, the environment variable NLS_LANG is used. If the environment variable NLS_LANG
is not set, ASCII is used.

The nencoding parameter is expected to be a string if specified and sets the encoding to use for national character
set database strings. If not specified, the environment variable NLS_NCHAR is used. If the environment variable
NLS_NCHAR is not used, the environment variable NLS_LANG is used instead, and if the environment variable
NLS_LANG is not set, ASCII is used.

The edition parameter is expected to be a string if specified and sets the edition to use for the session. It is only
relevant if both the client and the database are at least Oracle Database 11.2. If this parameter is used with the
cclass parameter the exception “DPI-1058: edition not supported with connection class” will be raised.

The appcontext parameter is expected to be a list of 3-tuples, if specified, and sets the application context for
the connection. Application context is available in the database by using the sys_context() PL/SQL method and
can be used within a logon trigger as well as any other PL/SQL procedures. Each entry in the list is expected to
contain three strings: the namespace, the name and the value.

The tag parameter, if specified, is expected to be a string and will limit the sessions that can be returned from
a session pool unless the matchanytag parameter is set to True. In that case sessions with the specified tag
will be preferred over others, but if no such sessions are available a session with a different tag may be returned
instead. In any case, untagged sessions will always be returned if no sessions with the specified tag are available.
Sessions are tagged when they are released back to the pool.

The shardingkey and supershardingkey parameters, if specified, are expected to be a sequence of values which
will be used to identify the database shard to connect to. Currently only strings are supported for the key values.

14 Chapter 2. Module Interface

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

cx_Oracle.Cursor(connection)
Constructor for creating a cursor. Return a new cursor object using the connection.

Note: This method is an extension to the DB API definition.

cx_Oracle.Date(year, month, day)
Construct an object holding a date value.

cx_Oracle.DateFromTicks(ticks)
Construct an object holding a date value from the given ticks value (number of seconds since the epoch; see the
documentation of the standard Python time module for details).

cx_Oracle.makedsn(host, port, sid=None, service_name=None, region=None, sharding_key=None, su-
per_sharding_key=None)

Return a string suitable for use as the dsn parameter for connect(). This string is identical to the strings that
are defined by the Oracle names server or defined in the tnsnames.ora file.

Note: This method is an extension to the DB API definition.

cx_Oracle.SessionPool(user=None, password=None, dsn=None, min=1, max=2, incre-
ment=1, connectiontype=cx_Oracle.Connection, threaded=False, get-
mode=cx_Oracle.SPOOL_ATTRVAL_NOWAIT, events=False, homoge-
neous=True, externalauth=False, encoding=None, nencoding=None,
edition=None, timeout=0, waitTimeout=0, maxLifetimeSession=0)

Create and return a session pool object. This allows for very fast connections to the database and is of primary
use in a server where the same connection is being made multiple times in rapid succession (a web server, for
example).

If the connection type is specified, all calls to acquire() will create connection objects of that type, rather
than the base type defined at the module level.

The threaded parameter is expected to be a boolean expression which indicates whether Oracle should wrap
accesses to connections with a mutex. Doing so in single threaded applications imposes a performance penalty
of about 10-15% which is why the default is False.

The events parameter is expected to be a boolean expression which indicates whether or not to initialize Oracle
in events mode. This is required for continuous query notification and high availablity event notifications.

The encoding parameter is expected to be a string, if specified, and sets the encoding to use for regular database
strings. If not specified, the environment variable NLS_LANG is used. If the environment variable NLS_LANG
is not set, ASCII is used.

The nencoding parameter is expected to be a string, if specified, and sets the encoding to use for national char-
acter set database strings. If not specified, the environment variable NLS_NCHAR is used. If the environment
variable NLS_NCHAR is not used, the environment variable NLS_LANG is used instead, and if the environ-
ment variable NLS_LANG is not set, ASCII is used.

The edition parameter is expected to be a string, if specified, and sets the edition to use for the sessions in the
pool. It is only relevant if both the client and the server are at least Oracle Database 11.2.

The timeout parameter is expected to be an integer, if specified, and sets the length of time (in seconds) after
which idle sessions in the pool are terminated. Note that termination only occurs when the pool is accessed. The
default value of 0 means that no idle sessions are terminated.

The waitTimeout parameter is expected to be an integer, if specified, and sets the length of time (in milliseconds)
that the caller should wait for a session to become available in the pool before returning with an error. This value
is only used if the getmode parameter is set to the value cx_Oracle.SPOOL_ATTRVAL_TIMEDWAIT.

15

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

The maxLifetimeSession parameter is expected to be an integer, if specified, and sets the maximum length of
time (in seconds) a pooled session may exist. Sessions that are in use will not be closed. They become candidates
for termination only when they are released back to the pool and have existed for longer than maxLifetimeSes-
sion seconds. Note that termination only occurs when the pool is accessed. The default value is 0 which means
that there is no maximum length of time that a pooled session may exist.

Note: This method is an extension to the DB API definition.

cx_Oracle.Time(hour, minute, second)
Construct an object holding a time value.

Note: The time only data type is not supported by Oracle. Calling this function will raise a NotSupportedError
exception.

cx_Oracle.TimeFromTicks(ticks)
Construct an object holding a time value from the given ticks value (number of seconds since the epoch; see the
documentation of the standard Python time module for details).

Note: The time only data type is not supported by Oracle. Calling this function will raise a NotSupportedError
exception.

cx_Oracle.Timestamp(year, month, day, hour, minute, second)
Construct an object holding a time stamp value.

cx_Oracle.TimestampFromTicks(ticks)
Construct an object holding a time stamp value from the given ticks value (number of seconds since the epoch;
see the documentation of the standard Python time module for details).

2.1 Constants

2.1.1 General

cx_Oracle.apilevel
String constant stating the supported DB API level. Currently ‘2.0’.

cx_Oracle.buildtime
String constant stating the time when the binary was built.

Note: This constant is an extension to the DB API definition.

cx_Oracle.paramstyle
String constant stating the type of parameter marker formatting expected by the interface. Currently ‘named’ as
in ‘where name = :name’.

cx_Oracle.threadsafety
Integer constant stating the level of thread safety that the interface supports. Currently 2, which means that
threads may share the module and connections, but not cursors. Sharing means that a thread may use a resource
without wrapping it using a mutex semaphore to implement resource locking.

16 Chapter 2. Module Interface

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Note that in order to make use of multiple threads in a program which intends to connect and disconnect in
different threads, the threaded parameter to connect() or SessionPool() must be true.

cx_Oracle.version

cx_Oracle.__version__
String constant stating the version of the module. Currently ‘6.4.0’.

Note: This attribute is an extension to the DB API definition.

2.1.2 Advanced Queuing: Delivery Modes

These constants are extensions to the DB API definition. They are possible values for the deliverymode attribute
of the dequeue options object passed as the options parameter to the Connection.deq() method as well as the
deliverymode attribute of the enqueue options object passed as the options parameter to the Connection.
enq() method. They are also possible values for the deliverymode attribute of the message properties object
passed as the msgproperties parameter to the Connection.deq() and Connection.enq() methods.

cx_Oracle.MSG_BUFFERED
This constant is used to specify that enqueue/dequeue operations should enqueue or dequeue buffered messages.

cx_Oracle.MSG_PERSISTENT
This constant is used to specify that enqueue/dequeue operations should enqueue or dequeue persistent mes-
sages. This is the default value.

cx_Oracle.MSG_PERSISTENT_OR_BUFFERED
This constant is used to specify that dequeue operations should dequeue either persistent or buffered messages.

2.1.3 Advanced Queuing: Dequeue Modes

These constants are extensions to the DB API definition. They are possible values for the mode attribute of the
dequeue options object. This object is the options parameter for the Connection.deq() method.

cx_Oracle.DEQ_BROWSE
This constant is used to specify that dequeue should read the message without acquiring any lock on the message
(eqivalent to a select statement).

cx_Oracle.DEQ_LOCKED
This constant is used to specify that dequeue should read and obtain a write lock on the message for the duration
of the transaction (equivalent to a select for update statement).

cx_Oracle.DEQ_REMOVE
This constant is used to specify that dequeue should read the message and update or delete it. This is the default
value.

cx_Oracle.DEQ_REMOVE_NODATA
This constant is used to specify that dequeue should confirm receipt of the message but not deliver the actual
message content.

2.1.4 Advanced Queuing: Dequeue Navigation Modes

These constants are extensions to the DB API definition. They are possible values for the navigation attribute of
the dequeue options object. This object is the options parameter for the Connection.deq() method.

2.1. Constants 17

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

cx_Oracle.DEQ_FIRST_MSG
This constant is used to specify that dequeue should retrieve the first available message that matches the search
criteria. This resets the position to the beginning of the queue.

cx_Oracle.DEQ_NEXT_MSG
This constant is used to specify that dequeue should retrieve the next available message that matches the search
criteria. If the previous message belongs to a message group, AQ retrieves the next available message that
matches the search criteria and belongs to the message group. This is the default.

cx_Oracle.DEQ_NEXT_TRANSACTION
This constant is used to specify that dequeue should skip the remainder of the transaction group and retrieve the
first message of the next transaction group. This option can only be used if message grouping is enabled for the
current queue.

2.1.5 Advanced Queuing: Dequeue Visibility Modes

These constants are extensions to the DB API definition. They are possible values for the visibility attribute of
the dequeue options object. This object is the options parameter for the Connection.deq() method.

cx_Oracle.DEQ_IMMEDIATE
This constant is used to specify that dequeue should perform its work as part of an independent transaction.

cx_Oracle.DEQ_ON_COMMIT
This constant is used to specify that dequeue should be part of the current transaction. This is the default value.

2.1.6 Advanced Queuing: Dequeue Wait Modes

These constants are extensions to the DB API definition. They are possible values for the wait attribute of the
dequeue options object. This object is the options parameter for the Connection.deq() method.

cx_Oracle.DEQ_NO_WAIT
This constant is used to specify that dequeue not wait for messages to be available for dequeuing.

cx_Oracle.DEQ_WAIT_FOREVER
This constant is used to specify that dequeue should wait forever for messages to be available for dequeuing.
This is the default value.

2.1.7 Advanced Queuing: Enqueue Visibility Modes

These constants are extensions to the DB API definition. They are possible values for the visibility attribute of
the enqueue options object. This object is the options parameter for the Connection.enq() method.

cx_Oracle.ENQ_IMMEDIATE
This constant is used to specify that enqueue should perform its work as part of an independent transaction.

cx_Oracle.ENQ_ON_COMMIT
This constant is used to specify that enqueue should be part of the current transaction. This is the default value.

2.1.8 Advanced Queuing: Message States

These constants are extensions to the DB API definition. They are possible values for the state attribute of the mes-
sage properties object. This object is the msgproperties parameter for the Connection.deq() and Connection.
enq() methods.

18 Chapter 2. Module Interface

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

cx_Oracle.MSG_EXPIRED
This constant is used to specify that the message has been moved to the exception queue.

cx_Oracle.MSG_PROCESSED
This constant is used to specify that the message has been processed and has been retained.

cx_Oracle.MSG_READY
This constant is used to specify that the message is ready to be processed.

cx_Oracle.MSG_WAITING
This constant is used to specify that the message delay has not yet been reached.

2.1.9 Advanced Queuing: Other

These constants are extensions to the DB API definition. They are special constants used in advanced queuing.

cx_Oracle.MSG_NO_DELAY
This constant is a possible value for the delay attribute of the message properties object passed as the msg-
properties parameter to the Connection.deq() and Connection.enq() methods. It specifies that no
delay should be imposed and the message should be immediately available for dequeuing. This is also the
default value.

cx_Oracle.MSG_NO_EXPIRATION
This constant is a possible value for the expiration attribute of the message properties object passed as the
msgproperties parameter to the Connection.deq() and Connection.enq() methods. It specifies that
the message never expires. This is also the default value.

2.1.10 Connection Authorization Modes

These constants are extensions to the DB API definition. They are possible values for the mode parameter of the
connect() method.

cx_Oracle.PRELIM_AUTH
This constant is used to specify that preliminary authentication is to be used. This is needed for performing
database startup and shutdown.

cx_Oracle.SYSASM
This constant is used to specify that SYSASM access is to be acquired.

cx_Oracle.SYSBKP
This constant is used to specify that SYSBACKUP access is to be acquired.

cx_Oracle.SYSDBA
This constant is used to specify that SYSDBA access is to be acquired.

cx_Oracle.SYSDGD
This constant is used to specify that SYSDG access is to be acquired.

cx_Oracle.SYSKMT
This constant is used to specify that SYSKM access is to be acquired.

cx_Oracle.SYSOPER
This constant is used to specify that SYSOPER access is to be acquired.

cx_Oracle.SYSRAC
This constant is used to specify that SYSRAC access is to be acquired.

2.1. Constants 19

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

2.1.11 Database Shutdown Modes

These constants are extensions to the DB API definition. They are possible values for the mode parameter of the
Connection.shutdown() method.

cx_Oracle.DBSHUTDOWN_ABORT
This constant is used to specify that the caller should not wait for current processing to complete or for users to
disconnect from the database. This should only be used in unusual circumstances since database recovery may
be necessary upon next startup.

cx_Oracle.DBSHUTDOWN_FINAL
This constant is used to specify that the instance can be truly halted. This should only be done after the database
has been shutdown with one of the other modes (except abort) and the database has been closed and dismounted
using the appropriate SQL commands.

cx_Oracle.DBSHUTDOWN_IMMEDIATE
This constant is used to specify that all uncommitted transactions should be rolled back and any connected users
should be disconnected.

cx_Oracle.DBSHUTDOWN_TRANSACTIONAL
This constant is used to specify that further connections to the database should be prohibited and no new trans-
actions should be allowed. It then waits for all active transactions to complete.

cx_Oracle.DBSHUTDOWN_TRANSACTIONAL_LOCAL
This constant is used to specify that further connections to the database should be prohibited and no new trans-
actions should be allowed. It then waits for only local active transactions to complete.

2.1.12 Event Types

These constants are extensions to the DB API definition. They are possible values for the Message.type attribute
of the messages that are sent for subscriptions created by the Connection.subscribe() method.

cx_Oracle.EVENT_AQ
This constant is used to specify that one or more messages are available for dequeuing on the queue specified
when the subscription was created.

cx_Oracle.EVENT_DEREG
This constant is used to specify that the subscription has been deregistered and no further notifications will be
sent.

cx_Oracle.EVENT_NONE
This constant is used to specify no information is available about the event.

cx_Oracle.EVENT_OBJCHANGE
This constant is used to specify that a database change has taken place on a table registered with the
Subscription.registerquery() method.

cx_Oracle.EVENT_QUERYCHANGE
This constant is used to specify that the result set of a query registered with the Subscription.
registerquery() method has been changed.

cx_Oracle.EVENT_SHUTDOWN
This constant is used to specify that the instance is in the process of being shut down.

cx_Oracle.EVENT_SHUTDOWN_ANY
This constant is used to specify that any instance (when running RAC) is in the process of being shut down.

cx_Oracle.EVENT_STARTUP
This constant is used to specify that the instance is in the process of being started up.

20 Chapter 2. Module Interface

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

2.1.13 Operation Codes

These constants are extensions to the DB API definition. They are possible values for the operations parameter for the
Connection.subscribe() method. One or more of these values can be OR’ed together. These values are also
used by the MessageTable.operation or MessageQuery.operation attributes of the messages that are
sent.

cx_Oracle.OPCODE_ALLOPS
This constant is used to specify that messages should be sent for all operations.

cx_Oracle.OPCODE_ALLROWS
This constant is used to specify that the table or query has been completely invalidated.

cx_Oracle.OPCODE_ALTER
This constant is used to specify that messages should be sent when a registered table has been altered in some
fashion by DDL, or that the message identifies a table that has been altered.

cx_Oracle.OPCODE_DELETE
This constant is used to specify that messages should be sent when data is deleted, or that the message identifies
a row that has been deleted.

cx_Oracle.OPCODE_DROP
This constant is used to specify that messages should be sent when a registered table has been dropped, or that
the message identifies a table that has been dropped.

cx_Oracle.OPCODE_INSERT
This constant is used to specify that messages should be sent when data is inserted, or that the message identifies
a row that has been inserted.

cx_Oracle.OPCODE_UPDATE
This constant is used to specify that messages should be sent when data is updated, or that the message identifies
a row that has been updated.

2.1.14 Session Pool Get Modes

These constants are extensions to the DB API definition. They are possible values for the getmode parameter of the
SessionPool() method.

cx_Oracle.SPOOL_ATTRVAL_FORCEGET
This constant is used to specify that a new connection will be returned if there are no free sessions available in
the pool.

cx_Oracle.SPOOL_ATTRVAL_NOWAIT
This constant is used to specify that an exception should be raised if there are no free sessions available in the
pool. This is the default value.

cx_Oracle.SPOOL_ATTRVAL_WAIT
This constant is used to specify that the caller should wait until a session is available if there are no free sessions
available in the pool.

cx_Oracle.SPOOL_ATTRVAL_TIMEDWAIT
This constant is used to specify that the caller should wait for a period of time (defined by the waitTimeout
parameter) for a session to become available before returning with an error.

2.1.15 Session Pool Purity

These constants are extensions to the DB API definition. They are possible values for the purity parameter of the
connect() method, which is used in database resident connection pooling (DRCP).

2.1. Constants 21

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

cx_Oracle.ATTR_PURITY_DEFAULT
This constant is used to specify that the purity of the session is the default value identified by Oracle (see Oracle’s
documentation for more information). This is the default value.

cx_Oracle.ATTR_PURITY_NEW
This constant is used to specify that the session acquired from the pool should be new and not have any prior
session state.

cx_Oracle.ATTR_PURITY_SELF
This constant is used to specify that the session acquired from the pool need not be new and may have prior
session state.

2.1.16 Subscription Grouping Classes

These constants are extensions to the DB API definition. They are possible values for the groupingClass parameter of
the Connection.subscribe() method.

cx_Oracle.SUBSCR_GROUPING_CLASS_TIME
This constant is used to specify that events are to be grouped by the period of time in which they are received.

2.1.17 Subscription Grouping Types

These constants are extensions to the DB API definition. They are possible values for the groupingType parameter of
the Connection.subscribe() method.

cx_Oracle.SUBSCR_GROUPING_TYPE_SUMMARY
This constant is used to specify that when events are grouped a summary of the events should be sent instead of
the individual events. This is the default value.

cx_Oracle.SUBSCR_GROUPING_TYPE_LAST
This constant is used to specify that when events are grouped the last event that makes up the group should be
sent instead of the individual events.

2.1.18 Subscription Namespaces

These constants are extensions to the DB API definition. They are possible values for the namespace parameter of the
Connection.subscribe() method.

cx_Oracle.SUBSCR_NAMESPACE_AQ
This constant is used to specify that notifications should be sent when a queue has messages available to dequeue.

cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE
This constant is used to specify that database change notification or query change notification messages are to
be sent. This is the default value.

2.1.19 Subscription Protocols

These constants are extensions to the DB API definition. They are possible values for the protocol parameter of the
Connection.subscribe() method.

cx_Oracle.SUBSCR_PROTO_HTTP
This constant is used to specify that notifications will be sent to an HTTP URL when a message is generated.
This value is currently not supported.

22 Chapter 2. Module Interface

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

cx_Oracle.SUBSCR_PROTO_MAIL
This constant is used to specify that notifications will be sent to an e-mail address when a message is generated.
This value is currently not supported.

cx_Oracle.SUBSCR_PROTO_OCI
This constant is used to specify that notifications will be sent to the callback routine identified when the sub-
scription was created. It is the default value and the only value currently supported.

cx_Oracle.SUBSCR_PROTO_SERVER
This constant is used to specify that notifications will be sent to a PL/SQL procedure when a message is gener-
ated. This value is currently not supported.

2.1.20 Subscription Quality of Service

These constants are extensions to the DB API definition. They are possible values for the qos parameter of the
Connection.subscribe() method. One or more of these values can be OR’ed together.

cx_Oracle.SUBSCR_QOS_BEST_EFFORT
This constant is used to specify that best effort filtering for query result set changes is acceptable. False positive
notifications may be received. This behaviour may be suitable for caching applications.

cx_Oracle.SUBSCR_QOS_DEREG_NFY
This constant is used to specify that the subscription should be automatically unregistered after the first notifi-
cation is received.

cx_Oracle.SUBSCR_QOS_QUERY
This constant is used to specify that notifications should be sent if the result set of the registered query changes.
By default no false positive notifications will be generated.

cx_Oracle.SUBSCR_QOS_RELIABLE
This constant is used to specify that notifications should not be lost in the event of database failure.

cx_Oracle.SUBSCR_QOS_ROWIDS
This constant is used to specify that the rowids of the inserted, updated or deleted rows should be included in
the message objects that are sent.

2.2 Types

cx_Oracle.BINARY
This type object is used to describe columns in a database that contain binary data. In Oracle this is RAW
columns.

cx_Oracle.BFILE
This type object is used to describe columns in a database that are BFILEs.

Note: This type is an extension to the DB API definition.

cx_Oracle.BLOB
This type object is used to describe columns in a database that are BLOBs.

Note: This type is an extension to the DB API definition.

2.2. Types 23

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

cx_Oracle.BOOLEAN
This type object is used to represent PL/SQL booleans.

New in version 5.2.1.

Note: This type is an extension to the DB API definition. It is only available in Oracle 12.1 and higher and
only within PL/SQL. It cannot be used in columns.

cx_Oracle.CLOB
This type object is used to describe columns in a database that are CLOBs.

Note: This type is an extension to the DB API definition.

cx_Oracle.CURSOR
This type object is used to describe columns in a database that are cursors (in PL/SQL these are known as ref
cursors).

Note: This type is an extension to the DB API definition.

cx_Oracle.DATETIME
This type object is used to describe columns in a database that are dates.

cx_Oracle.FIXED_CHAR
This type object is used to describe columns in a database that are fixed length strings (in Oracle these is CHAR
columns); these behave differently in Oracle than varchar2 so they are differentiated here even though the DB
API does not differentiate them.

Note: This attribute is an extension to the DB API definition.

cx_Oracle.FIXED_NCHAR
This type object is used to describe columns in a database that are NCHAR columns in Oracle; these behave
differently in Oracle than nvarchar2 so they are differentiated here even though the DB API does not differentiate
them.

Note: This type is an extension to the DB API definition.

cx_Oracle.INTERVAL
This type object is used to describe columns in a database that are of type interval day to second.

Note: This type is an extension to the DB API definition.

cx_Oracle.LOB
This type object is the Python type of BLOB and CLOB data that is returned from cursors.

Note: This type is an extension to the DB API definition.

24 Chapter 2. Module Interface

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

cx_Oracle.LONG_BINARY
This type object is used to describe columns in a database that are long binary (in Oracle these are LONG RAW
columns).

Note: This type is an extension to the DB API definition.

cx_Oracle.LONG_STRING
This type object is used to describe columns in a database that are long strings (in Oracle these are LONG
columns).

Note: This type is an extension to the DB API definition.

cx_Oracle.NATIVE_FLOAT
This type object is used to describe columns in a database that are of type binary_double or binary_float.

Note: This type is an extension to the DB API definition.

cx_Oracle.NATIVE_INT
This type object is used to bind integers using Oracle’s native integer support, rather than the standard number
support, which improves performance.

New in version 5.3.

Note: This type is an extension to the DB API definition.

cx_Oracle.NCHAR
This type object is used to describe national character strings (NVARCHAR2) in Oracle.

Note: This type is an extension to the DB API definition.

cx_Oracle.NCLOB
This type object is used to describe columns in a database that are NCLOBs.

Note: This type is an extension to the DB API definition.

cx_Oracle.NUMBER
This type object is used to describe columns in a database that are numbers.

cx_Oracle.OBJECT
This type object is used to describe columns in a database that are objects.

Note: This type is an extension to the DB API definition.

cx_Oracle.ROWID
This type object is used to describe the pseudo column “rowid”.

2.2. Types 25

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

cx_Oracle.STRING
This type object is used to describe columns in a database that are strings (in Oracle this is VARCHAR2
columns).

cx_Oracle.TIMESTAMP
This type object is used to describe columns in a database that are timestamps.

Note: This attribute is an extension to the DB API definition.

2.3 Exceptions

exception cx_Oracle.Warning
Exception raised for important warnings and defined by the DB API but not actually used by cx_Oracle.

exception cx_Oracle.Error
Exception that is the base class of all other exceptions defined by cx_Oracle and is a subclass of the Python
StandardError exception (defined in the module exceptions).

exception cx_Oracle.InterfaceError
Exception raised for errors that are related to the database interface rather than the database itself. It is a subclass
of Error.

exception cx_Oracle.DatabaseError
Exception raised for errors that are related to the database. It is a subclass of Error.

exception cx_Oracle.DataError
Exception raised for errors that are due to problems with the processed data. It is a subclass of DatabaseError.

exception cx_Oracle.OperationalError
Exception raised for errors that are related to the operation of the database but are not necessarily under the
control of the progammer. It is a subclass of DatabaseError.

exception cx_Oracle.IntegrityError
Exception raised when the relational integrity of the database is affected. It is a subclass of DatabaseError.

exception cx_Oracle.InternalError
Exception raised when the database encounters an internal error. It is a subclass of DatabaseError.

exception cx_Oracle.ProgrammingError
Exception raised for programming errors. It is a subclass of DatabaseError.

exception cx_Oracle.NotSupportedError
Exception raised when a method or database API was used which is not supported by the database. It is a
subclass of DatabaseError.

2.4 Exception handling

Note: PEP 249 (Python Database API Specification v2.0) says the following about exception values:

[. . .] The values of these exceptions are not defined. They should give the user a fairly good idea of what
went wrong, though. [. . .]

26 Chapter 2. Module Interface

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

With cx_Oracle every exception object has exactly one argument in the args tuple. This argument is a cx_Oracle.
_Error object which has the following five read-only attributes.

_Error.code
Integer attribute representing the Oracle error number (ORA-XXXXX).

_Error.offset
Integer attribute representing the error offset when applicable.

_Error.message
String attribute representing the Oracle message of the error. This message is localized by the environment of
the Oracle connection.

_Error.context
String attribute representing the context in which the exception was raised.

_Error.isrecoverable
Boolean attribute representing whether the error is recoverable or not. This is False in all cases unless Oracle
Database 12.1 is being used on both the server and the client.

New in version 5.3.

This allows you to use the exceptions for example in the following way:

from __future__ import print_function

import cx_Oracle

connection = cx_Oracle.Connection("cx_Oracle/dev@localhost/orclpdb")
cursor = connection.cursor()

try:
cursor.execute("select 1 / 0 from dual")

except cx_Oracle.DatabaseError as exc:
error, = exc.args
print("Oracle-Error-Code:", error.code)
print("Oracle-Error-Message:", error.message)

2.4. Exception handling 27

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

28 Chapter 2. Module Interface

CHAPTER 3

Connection Object

Note: Any outstanding changes will be rolled back when the connection object is destroyed or closed.

Connection.__enter__()
The entry point for the connection as a context manager. It returns itself.

Note: This method is an extension to the DB API definition.

Connection.__exit__()
The exit point for the connection as a context manager. The default (but deprecated) behavior is to
roll back the transaction in the event of an exception and to commit it otherwise. If the value of
cx_Oracle.__future__.ctx_mgr_close is set to True, however, the connection is closed instead. In cx_Oracle
7, this will become the default behaviour.

Note: This method is an extension to the DB API definition.

Connection.action
This write-only attribute sets the action column in the v$session table. It is a string attribute and cannot be set
to None – use the empty string instead.

Note: This attribute is an extension to the DB API definition.

Connection.autocommit
This read-write attribute determines whether autocommit mode is on or off. When autocommit mode is on, all
statements are committed as soon as they have completed executing.

Note: This attribute is an extension to the DB API definition.

29

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Connection.begin([formatId, transactionId, branchId])
Explicitly begin a new transaction. Without parameters, this explicitly begins a local transaction; otherwise, this
explicitly begins a distributed (global) transaction with the given parameters. See the Oracle documentation for
more details.

Note that in order to make use of global (distributed) transactions, the internal_name and
external_name attributes must be set.

Note: This method is an extension to the DB API definition.

Connection.cancel()
Cancel a long-running transaction.

Note: This method is an extension to the DB API definition.

Connection.changepassword(oldpassword, newpassword)
Change the password of the logon.

Note: This method is an extension to the DB API definition.

Connection.client_identifier
This write-only attribute sets the client_identifier column in the v$session table.

Note: This attribute is an extension to the DB API definition.

Connection.clientinfo
This write-only attribute sets the client_info column in the v$session table.

Note: This attribute is an extension to the DB API definition.

Connection.close()
Close the connection now, rather than whenever __del__ is called. The connection will be unusable from this
point forward; an Error exception will be raised if any operation is attempted with the connection.

All open cursors and LOBs created by the connection will be closed and will also no longer be usable.

Internally, references to the connection are held by cursor objects, LOB objects, subscription objects, etc. Once
all of these references are released, the connection itself will be closed automatically. Either control references to
these related objects carefully or explicitly close connections in order to ensure sufficient resources are available.

Connection.commit()
Commit any pending transactions to the database.

Connection.createlob(lobType)
Create and return a new temporary LOB object of the specified type. The lobType parameter should be one of
cx_Oracle.CLOB, cx_Oracle.BLOB or cx_Oracle.NCLOB.

New in version 6.2.

Note: This method is an extension to the DB API definition.

30 Chapter 3. Connection Object

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Connection.current_schema
This read-write attribute sets the current schema attribute for the session. Setting this value is the same as exe-
cuting the SQL statement “ALTER SESSION SET CURRENT_SCHEMA”. The attribute is set (and verified)
on the next call that does a round trip to the server. The value is placed before unqualified database objects in
SQL statements you then execute.

Note: This attribute is an extension to the DB API definition.

Connection.cursor()
Return a new cursor object using the connection.

Connection.dbop
This write-only attribute sets the database operation that is to be monitored. This can be viewed in the
DBOP_NAME column of the V$SQL_MONITOR table.

Note: This attribute is an extension to the DB API definition.

Connection.deq(name, options, msgproperties, payload)
Returns a message id after successfully dequeuing a message. The options object can be created using
deqoptions() and the msgproperties object can be created using msgproperties(). The payload must
be an object created using ObjectType.newobject().

New in version 5.3.

Note: This method is an extension to the DB API definition.

Connection.deqoptions()
Returns an object specifying the options to use when dequeuing messages. See Dequeue Options for more
information.

New in version 5.3.

Note: This method is an extension to the DB API definition.

Connection.dsn
This read-only attribute returns the TNS entry of the database to which a connection has been established.

Note: This attribute is an extension to the DB API definition.

Connection.edition
This read-only attribute gets the session edition and is only available in Oracle Database 11.2 (both client and
server must be at this level or higher for this to work).

New in version 5.3.

Note: This attribute is an extension to the DB API definition.

Connection.encoding
This read-only attribute returns the IANA character set name of the character set in use by the Oracle client for
regular strings.

31

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Note: This attribute is an extension to the DB API definition.

Connection.enq(name, options, msgproperties, payload)
Returns a message id after successfully enqueuing a message. The options object can be created using
enqoptions() and the msgproperties object can be created using msgproperties(). The payload must
be an object created using ObjectType.newobject().

New in version 5.3.

Note: This method is an extension to the DB API definition.

Connection.enqoptions()
Returns an object specifying the options to use when enqueuing messages. See Enqueue Options for more
information.

New in version 5.3.

Note: This method is an extension to the DB API definition.

Connection.external_name
This read-write attribute specifies the external name that is used by the connection when logging distributed
transactions.

New in version 5.3.

Note: This attribute is an extension to the DB API definition.

Connection.gettype(name)
Return a type object given its name. This can then be used to create objects which can be bound to cursors
created by this connection.

New in version 5.3.

Note: This method is an extension to the DB API definition.

Connection.handle
This read-only attribute returns the OCI service context handle for the connection. It is primarily provided to
facilitate testing the creation of a connection using the OCI service context handle.

Note: This attribute is an extension to the DB API definition.

Connection.inputtypehandler
This read-write attribute specifies a method called for each value that is bound to a statement executed on any
cursor associated with this connection. The method signature is handler(cursor, value, arraysize) and the return
value is expected to be a variable object or None in which case a default variable object will be created. If this
attribute is None, the default behavior will take place for all values bound to statements.

Note: This attribute is an extension to the DB API definition.

32 Chapter 3. Connection Object

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Connection.internal_name
This read-write attribute specifies the internal name that is used by the connection when logging distributed
transactions.

New in version 5.3.

Note: This attribute is an extension to the DB API definition.

Connection.ltxid
This read-only attribute returns the logical transaction id for the connection. It is used within Oracle Transaction
Guard as a means of ensuring that transactions are not duplicated. See the Oracle documentation and the
provided sample for more information.

New in version 5.3.

Connection.maxBytesPerCharacter
This read-only attribute returns the maximum number of bytes each character can use for the client character
set.

Note: This attribute is an extension to the DB API definition.

Connection.module
This write-only attribute sets the module column in the v$session table. The maximum length for this string is
48 and if you exceed this length you will get ORA-24960.

Connection.msgproperties()
Returns an object specifying the properties of messages used in advanced queuing. See Message Properties for
more information.

New in version 5.3.

Note: This method is an extension to the DB API definition.

Connection.nencoding
This read-only attribute returns the IANA character set name of the national character set in use by the Oracle
client.

Note: This attribute is an extension to the DB API definition.

Connection.outputtypehandler
This read-write attribute specifies a method called for each column that is going to be fetched from any cursor
associated with this connection. The method signature is handler(cursor, name, defaultType, length, precision,
scale) and the return value is expected to be a variable object or None in which case a default variable object will
be created. If this attribute is None, the default behavior will take place for all columns fetched from cursors.

Note: This attribute is an extension to the DB API definition.

Connection.ping()
Ping the server which can be used to test if the connection is still active.

33

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Note: This method is an extension to the DB API definition.

Connection.prepare()
Prepare the distributed (global) transaction for commit. Return a boolean indicating if a transaction was actually
prepared in order to avoid the error ORA-24756 (transaction does not exist).

Note: This method is an extension to the DB API definition.

Connection.rollback()
Rollback any pending transactions.

Connection.shutdown([mode])
Shutdown the database. In order to do this the connection must be connected as SYSDBA or SYSOPER. Two
calls must be made unless the mode specified is DBSHUTDOWN_ABORT. An example is shown below:

import cx_Oracle

connection = cx_Oracle.Connection(mode = cx_Oracle.SYSDBA)
connection.shutdown(mode = cx_Oracle.DBSHUTDOWN_IMMEDIATE)
cursor = connection.cursor()
cursor.execute("alter database close normal")
cursor.execute("alter database dismount")
connection.shutdown(mode = cx_Oracle.DBSHUTDOWN_FINAL)

Note: This method is an extension to the DB API definition.

Connection.startup(force=False, restrict=False)
Startup the database. This is equivalent to the SQL*Plus command “startup nomount”. The connection must be
connected as SYSDBA or SYSOPER with the PRELIM_AUTH option specified for this to work. An example is
shown below:

import cx_Oracle

connection = cx_Oracle.Connection(
mode = cx_Oracle.SYSDBA | cx_Oracle.PRELIM_AUTH)

connection.startup()
connection = cx_Oracle.connect(mode = cx_Oracle.SYSDBA)
cursor = connection.cursor()
cursor.execute("alter database mount")
cursor.execute("alter database open")

Note: This method is an extension to the DB API definition.

Connection.stmtcachesize
This read-write attribute specifies the size of the statement cache. This value can make a significant difference
in performance (up to 100x) if you have a small number of statements that you execute repeatedly.

Note: This attribute is an extension to the DB API definition.

34 Chapter 3. Connection Object

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Connection.subscribe(namespace=cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE, pro-
tocol=cx_Oracle.SUBSCR_PROTO_OCI, callback=None, time-
out=0, operations=OPCODE_ALLOPS, port=0, qos=0, ipAd-
dress=None, groupingClass=0, groupingValue=0, grouping-
Type=cx_Oracle.SUBSCR_GROUPING_TYPE_SUMMARY, name=None)

Return a new subscription object that receives notifications for events that take place in the database that match
the given parameters.

The namespace parameter specifies the namespace the subscription uses. It can be one of cx_Oracle.
SUBSCR_NAMESPACE_DBCHANGE or cx_Oracle.SUBSCR_NAMESPACE_AQ.

The protocol parameter specifies the protocol to use when notifications are sent. Currently the only valid value
is cx_Oracle.SUBSCR_PROTO_OCI.

The callback is expected to be a callable that accepts a single parameter. A message object is passed to this
callback whenever a notification is received.

The timeout value specifies that the subscription expires after the given time in seconds. The default value of 0
indicates that the subscription never expires.

The operations parameter enables filtering of the messages that are sent (insert, update, delete). The default
value will send notifications for all operations. This parameter is only used when the namespace is set to
cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE.

The port parameter specifies the listening port for callback notifications from the database server. If not specified,
an unused port will be selected by the Oracle Client libraries.

The qos parameter specifies quality of service options. It should be one or more of the following flags,
OR’ed together: cx_Oracle.SUBSCR_QOS_RELIABLE, cx_Oracle.SUBSCR_QOS_DEREG_NFY ,
cx_Oracle.SUBSCR_QOS_ROWIDS, cx_Oracle.SUBSCR_QOS_QUERY , cx_Oracle.
SUBSCR_QOS_BEST_EFFORT.

The ipAddress parameter specifies the IP address (IPv4 or IPv6) in standard string notation to bind for callback
notifications from the database server. If not specified, the client IP address will be determined by the Oracle
Client libraries.

The groupingClass parameter specifies what type of grouping of notifications should take place. Currently, if
set, this value can only be set to the value cx_Oracle.SUBSCR_GROUPING_CLASS_TIME, which will
group notifications by the number of seconds specified in the groupingValue parameter. The groupingType
parameter should be one of the values cx_Oracle.SUBSCR_GROUPING_TYPE_SUMMARY (the default) or
cx_Oracle.SUBSCR_GROUPING_TYPE_LAST.

The name parameter is used to identify the subscription and is specific to the selected namespace.
If the namespace parameter is cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE then the name is op-
tional and can be any value. If the namespace parameter is cx_Oracle.SUBSCR_NAMESPACE_AQ,
however, the name must be in the format ‘<QUEUE_NAME>’ for single consumer queues and
‘<QUEUE_NAME>:<CONSUMER_NAME>’ for multiple consumer queues, and identifies the queue that will
be monitored for messages. The queue name may include the schema, if needed.

New in version 6.4: The parameters ipAddress, groupingClass, groupingValue, groupingType and name were
added.

Note: This method is an extension to the DB API definition.

Note: The subscription can be deregistered in the database by calling the function unsubscribe(). If this
method is not called and the connection that was used to create the subscription is explictly closed using the
function close(), the subscription will not be deregistered in the database.

35

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Connection.tnsentry
This read-only attribute returns the TNS entry of the database to which a connection has been established.

Note: This attribute is an extension to the DB API definition.

Connection.unsubscribe(subscr)
Unsubscribe from events in the database that were originally subscribed to using subscribe(). The con-
nection used to unsubscribe should be the same one used to create the subscription, or should access the same
database and be connected as the same user name.

New in version 6.4.

Connection.username
This read-only attribute returns the name of the user which established the connection to the database.

Note: This attribute is an extension to the DB API definition.

Connection.version
This read-only attribute returns the version of the database to which a connection has been established.

Note: This attribute is an extension to the DB API definition.

36 Chapter 3. Connection Object

CHAPTER 4

Cursor Object

Cursor.__enter__()
The entry point for the cursor as a context manager. It returns itself.

Note: This method is an extension to the DB API definition.

Cursor.__exit__()
The exit point for the cursor as a context manager. It closes the cursor.

Note: This method is an extension to the DB API definition.

Cursor.arraysize
This read-write attribute specifies the number of rows to fetch at a time internally and is the default number of
rows to fetch with the fetchmany() call. It defaults to 100 meaning to fetch 100 rows at a time. Note that
this attribute can drastically affect the performance of a query since it directly affects the number of network
round trips that need to be performed. This is the reason for setting it to 100 instead of the 1 that the DB API
recommends.

Cursor.bindarraysize
This read-write attribute specifies the number of rows to bind at a time and is used when creating variables via
setinputsizes() or var(). It defaults to 1 meaning to bind a single row at a time.

Note: The DB API definition does not define this attribute.

Cursor.arrayvar(dataType, value[, size])
Create an array variable associated with the cursor of the given type and size and return a variable object. The
value is either an integer specifying the number of elements to allocate or it is a list and the number of elements
allocated is drawn from the size of the list. If the value is a list, the variable is also set with the contents of the list.
If the size is not specified and the type is a string or binary, 4000 bytes is allocated. This is needed for passing
arrays to PL/SQL (in cases where the list might be empty and the type cannot be determined automatically) or
returning arrays from PL/SQL.

37

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Note: The DB API definition does not define this method.

Cursor.bindnames()
Return the list of bind variable names bound to the statement. Note that a statement must have been prepared
first.

Note: The DB API definition does not define this method.

Cursor.bindvars
This read-only attribute provides the bind variables used for the last execute. The value will be either a list or a
dictionary depending on whether binding was done by position or name. Care should be taken when referencing
this attribute. In particular, elements should not be removed or replaced.

Note: The DB API definition does not define this attribute.

Cursor.callfunc(name, returnType, parameters=[], keywordParameters={})
Call a function with the given name. The return type is specified in the same notation as is required by
setinputsizes(). The sequence of parameters must contain one entry for each parameter that the function
expects. Any keyword parameters will be included after the positional parameters. The result of the call is the
return value of the function.

Note: The DB API definition does not define this method.

Note: If you intend to call Cursor.setinputsizes() on the cursor prior to making this call, then note
that the first item in the parameter list refers to the return value of the function.

Cursor.callproc(name, parameters=[], keywordParameters={})
Call a procedure with the given name. The sequence of parameters must contain one entry for each parameter
that the procedure expects. The result of the call is a modified copy of the input sequence. Input parameters are
left untouched; output and input/output parameters are replaced with possibly new values. Keyword parameters
will be included after the positional parameters and are not returned as part of the output sequence.

Note: The DB API definition does not allow for keyword parameters.

Cursor.close()
Close the cursor now, rather than whenever __del__ is called. The cursor will be unusable from this point
forward; an Error exception will be raised if any operation is attempted with the cursor.

Cursor.connection
This read-only attribute returns a reference to the connection object on which the cursor was created.

Note: This attribute is an extension to the DB API definition but it is mentioned in PEP 249 as an optional
extension.

Cursor.description
This read-only attribute is a sequence of 7-item sequences. Each of these sequences contains information de-

38 Chapter 4. Cursor Object

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

scribing one result column: (name, type, display_size, internal_size, precision, scale, null_ok). This attribute
will be None for operations that do not return rows or if the cursor has not had an operation invoked via the
execute() method yet.

The type will be one of the type objects defined at the module level.

Cursor.execute(statement[, parameters], **keywordParameters)
Execute a statement against the database. Parameters may be passed as a dictionary or sequence or as keyword
parameters. If the parameters are a dictionary, the values will be bound by name and if the parameters are
a sequence the values will be bound by position. Note that if the values are bound by position, the order of
the variables is from left to right as they are encountered in the statement and SQL statements are processed
differently than PL/SQL statements. For this reason, it is generally recommended to bind parameters by name
instead of by position.

Parameters passed as a dictionary are name and value pairs. The name maps to the bind variable name used by
the statement and the value maps to the Python value you wish bound to that bind variable.

A reference to the statement will be retained by the cursor. If None or the same string object is passed in again,
the cursor will execute that statement again without performing a prepare or rebinding and redefining. This is
most effective for algorithms where the same statement is used, but different parameters are bound to it (many
times). Note that parameters that are not passed in during subsequent executions will retain the value passed in
during the last execution that contained them.

For maximum efficiency when reusing an statement, it is best to use the setinputsizes()method to specify
the parameter types and sizes ahead of time; in particular, None is assumed to be a string of length 1 so any
values that are later bound as numbers or dates will raise a TypeError exception.

If the statement is a query, the cursor is returned as a convenience to the caller (so it can be used directly as an
iterator over the rows in the cursor); otherwise, None is returned.

Note: The DB API definition does not define the return value of this method.

Cursor.executemany(statement, parameters, batcherrors=False, arraydmlrowcounts=False)
Prepare a statement for execution against a database and then execute it against all parameter mappings or
sequences found in the sequence parameters. The statement is managed in the same way as the execute()
method manages it. If the size of the buffers allocated for any of the parameters exceeds 2 GB, you will receive
the error “DPI-1015: array size of <n> is too large”, where <n> varies with the size of each element being
allocated in the buffer. If you receive this error, decrease the number of elements in the sequence parameters.

If there are no parameters, or parameters have previously been bound, the number of iterations can be specified
as an integer instead of needing to provide a list of empty mappings or sequences.

When true, the batcherrors parameter enables batch error support within Oracle and ensures that the call succeeds
even if an exception takes place in one or more of the sequence of parameters. The errors can then be retrieved
using getbatcherrors().

When true, the arraydmlrowcounts parameter enables DML row counts to be retrieved from Oracle after the
method has completed. The row counts can then be retrieved using getarraydmlrowcounts().

Both the batcherrors parameter and the arraydmlrowcounts parameter can only be true when executing an insert,
update, delete or merge statement; in all other cases an error will be raised.

For maximum efficiency, it is best to use the setinputsizes() method to specify the parameter types and
sizes ahead of time; in particular, None is assumed to be a string of length 1 so any values that are later bound
as numbers or dates will raise a TypeError exception.

Cursor.executemanyprepared(numIters)
Execute the previously prepared and bound statement the given number of times. The variables that are bound

39

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

must have already been set to their desired value before this call is made. This method was designed for the case
where optimal performance is required as it comes at the expense of compatibility with the DB API.

Note: The DB API definition does not define this method.

Deprecated since version 6.4: Use executemany() instead with None for the statement argument and an
integer for the parameters argument.

Cursor.fetchall()
Fetch all (remaining) rows of a query result, returning them as a list of tuples. An empty list is returned if no
more rows are available. Note that the cursor’s arraysize attribute can affect the performance of this operation,
as internally reads from the database are done in batches corresponding to the arraysize.

An exception is raised if the previous call to execute() did not produce any result set or no call was issued
yet.

Cursor.fetchmany([numRows=cursor.arraysize])
Fetch the next set of rows of a query result, returning a list of tuples. An empty list is returned if no more rows
are available. Note that the cursor’s arraysize attribute can affect the performance of this operation.

The number of rows to fetch is specified by the parameter. If it is not given, the cursor’s arrysize attribute
determines the number of rows to be fetched. If the number of rows available to be fetched is fewer than the
amount requested, fewer rows will be returned.

An exception is raised if the previous call to execute() did not produce any result set or no call was issued
yet.

Cursor.fetchone()
Fetch the next row of a query result set, returning a single tuple or None when no more data is available.

An exception is raised if the previous call to execute() did not produce any result set or no call was issued
yet.

Cursor.fetchraw([numRows=cursor.arraysize])
Fetch the next set of rows of a query result into the internal buffers of the defined variables for the cursor. The
number of rows actually fetched is returned. This method was designed for the case where optimal performance
is required as it comes at the expense of compatibility with the DB API.

An exception is raised if the previous call to execute() did not produce any result set or no call was issued
yet.

Note: The DB API definition does not define this method.

Cursor.fetchvars
This read-only attribute specifies the list of variables created for the last query that was executed on the cursor.
Care should be taken when referencing this attribute. In particular, elements should not be removed or replaced.

Note: The DB API definition does not define this attribute.

Cursor.getarraydmlrowcounts()
Retrieve the DML row counts after a call to executemany() with arraydmlrowcounts enabled. This will
return a list of integers corresponding to the number of rows affected by the DML statement for each element of
the array passed to executemany().

40 Chapter 4. Cursor Object

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Note: The DB API definition does not define this method and it is only available for Oracle 12.1 and higher.

Cursor.getbatcherrors()
Retrieve the exceptions that took place after a call to executemany() with batcherors enabled. This will
return a list of Error objects, one error for each iteration that failed. The offset can be determined by looking at
the offset attribute of the error object.

Note: The DB API definition does not define this method.

Cursor.getimplicitresults()
Return a list of cursors which correspond to implicit results made available from a PL/SQL block or procedure
without the use of OUT ref cursor parameters. The PL/SQL block or procedure opens the cursors and marks
them for return to the client using the procedure dbms_sql.return_result. Cursors returned in this fashion should
not be closed. They will be closed automatically by the parent cursor when it is closed. Closing the parent
cursor will invalidate the cursors returned by this method.

New in version 5.3.

Note: The DB API definition does not define this method and it is only available for Oracle Database 12.1
(both client and server must be at this level or higher). It is most like the DB API method nextset(), but unlike
that method (which requires that the next result set overwrite the current result set), this method returns cursors
which can be fetched independently of each other.

Cursor.inputtypehandler
This read-write attribute specifies a method called for each value that is bound to a statement executed on the
cursor and overrides the attribute with the same name on the connection if specified. The method signature is
handler(cursor, value, arraysize) and the return value is expected to be a variable object or None in which case
a default variable object will be created. If this attribute is None, the value of the attribute with the same name
on the connection is used.

Note: This attribute is an extension to the DB API definition.

Cursor.__iter__()
Returns the cursor itself to be used as an iterator.

Note: This method is an extension to the DB API definition but it is mentioned in PEP 249 as an optional
extension.

Cursor.outputtypehandler
This read-write attribute specifies a method called for each column that is to be fetched from this cursor. The
method signature is handler(cursor, name, defaultType, length, precision, scale) and the return value is expected
to be a variable object or None in which case a default variable object will be created. If this attribute is None,
the value of the attribute with the same name on the connection is used instead.

Note: This attribute is an extension to the DB API definition.

Cursor.parse(statement)
This can be used to parse a statement without actually executing it (this step is done automatically by Oracle

41

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

when a statement is executed).

Note: The DB API definition does not define this method.

Note: You can parse any DML or DDL statement. DDL statements are executed immediately and an implied
commit takes place.

Cursor.prepare(statement[, tag])
This can be used before a call to execute() to define the statement that will be executed. When this is done,
the prepare phase will not be performed when the call to execute() is made with None or the same string
object as the statement. If specified the statement will be returned to the statement cache with the given tag. See
the Oracle documentation for more information about the statement cache.

Note: The DB API definition does not define this method.

Cursor.rowcount
This read-only attribute specifies the number of rows that have currently been fetched from the cursor (for select
statements) or that have been affected by the operation (for insert, update and delete statements).

Cursor.rowfactory
This read-write attribute specifies a method to call for each row that is retrieved from the database. Ordinarily a
tuple is returned for each row but if this attribute is set, the method is called with the tuple that would normally
be returned, and the result of the method is returned instead.

Note: The DB API definition does not define this attribute.

Cursor.scroll(value=0, mode="relative")
Scroll the cursor in the result set to a new position according to the mode.

If mode is “relative” (the default value), the value is taken as an offset to the current position in the result set. If
set to “absolute”, value states an absolute target position. If set to “first”, the cursor is positioned at the first row
and if set to “last”, the cursor is set to the last row in the result set.

An error is raised if the mode is “relative” or “absolute” and the scroll operation would position the cursor
outside of the result set.

New in version 5.3.

Note: This method is an extension to the DB API definition but it is mentioned in PEP 249 as an optional
extension.

Cursor.scrollable
This read-write boolean attribute specifies whether the cursor can be scrolled or not. By default, cursors are not
scrollable, as the server resources and response times are greater than nonscrollable cursors. This attribute is
checked and the corresponding mode set in Oracle when calling the method execute().

New in version 5.3.

Note: The DB API definition does not define this attribute.

42 Chapter 4. Cursor Object

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Cursor.setinputsizes(*args, **keywordArgs)
This can be used before a call to execute(), callfunc() or callproc() to predefine memory areas
for the operation’s parameters. Each parameter should be a type object corresponding to the input that will be
used or it should be an integer specifying the maximum length of a string parameter. Use keyword parameters
when binding by name and positional parameters when binding by position. The singleton None can be used as
a parameter when using positional parameters to indicate that no space should be reserved for that position.

Note: If you plan to use callfunc() then be aware that the first parameter in the list refers to the return
value of the function.

Cursor.setoutputsize(size[, column])
This method does nothing and is retained solely for compatibility with the DB API. The module automatically
allocates as much space as needed to fetch LONG and LONG RAW columns (or CLOB as string and BLOB as
bytes).

Cursor.statement
This read-only attribute provides the string object that was previously prepared with prepare() or executed
with execute().

Note: The DB API definition does not define this attribute.

Cursor.var(dataType[, size, arraysize, inconverter, outconverter, typename, encodingErrors])
Create a variable with the specified charactistics. This method was designed for use with PL/SQL in/out vari-
ables where the length or type cannot be determined automatically from the Python object passed in or for use
in input and output type handlers defined on cursors or connections.

The dataType parameter specifies the type of data that should be stored in the variable. This should be one of
the types defined at the module level (such as cx_Oracle.STRING) or a Python type that cx_Oracle knows
how to process (such as str).

The size parameter specifies the length of string and raw variables and is ignored in all other cases. If not
specified for string and raw variables, the value 4000 is used.

The arraysize parameter specifies the number of elements the variable will have. If not specified the bind array
size (usually 1) is used. When a variable is created in an output type handler this parameter should be set to the
cursor’s array size.

The inconverter and outconverter parameters specify methods used for converting values to/from the database.
More information can be found in the section on variable objects.

The typename parameter specifies the name of a SQL object type and must be specified when using type
cx_Oracle.OBJECT.

The encodingErrors parameter specifies what should happen when decoding byte strings fetched from the
database into strings (Python 3) or unicode objects (Python 2). It should be one of the values noted in the
builtin decode function.

Note: The DB API definition does not define this method.

43

https://docs.python.org/3/library/stdtypes.html#bytes.decode

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

44 Chapter 4. Cursor Object

CHAPTER 5

Variable Objects

Note: The DB API definition does not define this object.

Variable.actualElements
This read-only attribute returns the actual number of elements in the variable. This corresponds to the number of
elements in a PL/SQL index-by table for variables that are created using the method Cursor.arrayvar().
For all other variables this value will be identical to the attribute numElements.

Variable.bufferSize
This read-only attribute returns the size of the buffer allocated for each element in bytes.

Variable.getvalue([pos=0])
Return the value at the given position in the variable. For variables created using the method Cursor.
arrayvar() the value returned will be a list of each of the values in the PL/SQL index-by table. For variables
bound to DML returning statements where the attribute cx_Oracle.__future__.dml_ret_array_val is set to the
value True, the value returned will also be a list corresponding to the returned data for the given execution of
the statement (as identified by the pos parameter). For variables bound to DML returning statements and the
attribute cx_Oracle.__future__.dml_ret_array_val is not set or is set to the value False, the value returned de-
pends on the number of rows returned by the first execution of the statement. If pos is a valid index into that
array then the value at that index will be returned; otherwise, None is returned.

Variable.inconverter
This read-write attribute specifies the method used to convert data from Python to the Oracle database. The
method signature is converter(value) and the expected return value is the value to bind to the database. If this
attribute is None, the value is bound directly without any conversion.

Variable.numElements
This read-only attribute returns the number of elements allocated in an array, or the number of scalar items that
can be fetched into the variable or bound to the variable.

Variable.outconverter
This read-write attribute specifies the method used to convert data from from the Oracle to Python. The method
signature is converter(value) and the expected return value is the value to return to Python. If this attribute is
None, the value is returned directly without any conversion.

45

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Variable.setvalue(pos, value)
Set the value at the given position in the variable.

Variable.size
This read-only attribute returns the size of the variable. For strings this value is the size in characters. For all
others, this is same value as the attribute bufferSize.

Variable.type
This read-only attribute returns the type of the variable for those variables that bind Oracle objects (it is not
present for any other type of variable).

Variable.values
This read-only attribute returns a copy of the value of all actual positions in the variable as a list. For variables
bound to DML returning statements where the attribute cx_Oracle.__future__.dml_ret_array_val is not set or
set to the value False, this will be the returned data for the first execution of the statement. In all other cases
the elements returned will be the equivalent of calling getvalue() for each valid position and the length will
correspond to the value of the actualElements attribute.

46 Chapter 5. Variable Objects

CHAPTER 6

SessionPool Object

Note: This object is an extension to the DB API.

SessionPool.acquire(user=None, password=None, cclass=None, pu-
rity=cx_Oracle.ATTR_PURITY_DEFAULT, tag=None, matchanytag=False,
shardingkey=[], supershardingkey=[])

Acquire a connection from the session pool and return a connection object.

If the pool is homogeneous, the user and password parameters cannot be specified. If they are, an exception will
be raised.

The cclass parameter, if specified, should be a string corresponding to the connection class for database resident
connection pooling (DRCP).

The purity parameter is expected to be one of ATTR_PURITY_NEW , ATTR_PURITY_SELF, or
ATTR_PURITY_DEFAULT.

The tag parameter, if specified, is expected to be a string and will limit the sessions that can be returned from
a session pool unless the matchanytag parameter is set to True. In that case sessions with the specified tag
will be preferred over others, but if no such sessions are available a session with a different tag may be returned
instead. In any case, untagged sessions will always be returned if no sessions with the specified tag are available.
Sessions are tagged when they are released back to the pool.

The shardingkey and supershardingkey parameters, if specified, are expected to be a sequence of values which
will be used to identify the database shard to connect to. Currently only strings are supported for the key values.

SessionPool.busy
This read-only attribute returns the number of sessions currently acquired.

SessionPool.drop(connection)
Drop the connection from the pool which is useful if the connection is no longer usable (such as when the
session is killed).

SessionPool.dsn
This read-only attribute returns the TNS entry of the database to which a connection has been established.

47

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

SessionPool.homogeneous
This read-write boolean attribute indicates whether the pool is considered homogeneous or not. If the pool is
not homogeneous different authentication can be used for each connection acquired from the pool.

SessionPool.increment
This read-only attribute returns the number of sessions that will be established when additional sessions need to
be created.

SessionPool.max
This read-only attribute returns the maximum number of sessions that the session pool can control.

SessionPool.max_lifetime_session
This read-write attribute returns the maximum length of time (in seconds) that a pooled session may exist.
Sessions that are in use will not be closed. They become candidates for termination only when they are released
back to the pool and have existed for longer than max_lifetime_session seconds. Note that termination only
occurs when the pool is accessed. A value of 0 means that there is no maximum length of time that a pooled
session may exist. This attribute is only available in Oracle Database 12.1.

New in version 5.3.

SessionPool.min
This read-only attribute returns the number of sessions with which the session pool was created and the minimum
number of sessions that will be controlled by the session pool.

SessionPool.name
This read-only attribute returns the name assigned to the session pool by Oracle.

SessionPool.opened
This read-only attribute returns the number of sessions currently opened by the session pool.

SessionPool.release(connection, tag=None)
Release the connection back to the pool now, rather than whenever __del__ is called. The connection will
be unusable from this point forward; an Error exception will be raised if any operation is attempted with the
connection.

Before the connection can be released back to the pool, all cursors created by the connection must first be closed
or all references released. In addition, all LOB objects created by the connection must have their references
released. If this has not been done, the exception “DPI-1054: connection cannot be closed when open statements
or LOBs exist” will be raised.

Internally, references to the connection are held by cursor objects, LOB objects, subscription objects, etc. Once
all of these references are released, the connection itself will be released back to the pool automatically. Either
control references to these related objects carefully or explicitly release connections back to the pool in order to
ensure sufficient resources are available.

SessionPool.stmtcachesize
This read-write attribute specifies the size of the statement cache that will be used as the starting point for any
connections that are created by the session pool. Once created, the connection’s statement cache size can only
be changed by setting the stmtcachesize attribute on the connection itself.

New in version 6.0.

SessionPool.timeout
This read-write attribute specifies the time (in seconds) after which idle sessions will be terminated in order to
maintain an optimum number of open sessions. Note that termination only occurs when the pool is accessed. A
value of 0 means that no idle sessions are terminated.

SessionPool.tnsentry
This read-only attribute returns the TNS entry of the database to which a connection has been established.

48 Chapter 6. SessionPool Object

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

SessionPool.username
This read-only attribute returns the name of the user which established the connection to the database.

SessionPool.wait_timeout
This read-write attribute specifies the time (in milliseconds) that the caller should wait for a session to be-
come available in the pool before returning with an error. This value is only used if the getmode parameter to
cx_Oracle.SessionPool() was the value cx_Oracle.SPOOL_ATTRVAL_TIMEDWAIT.

New in version 6.4.

49

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

50 Chapter 6. SessionPool Object

CHAPTER 7

Subscription Object

Note: This object is an extension the DB API.

Subscription.callback
This read-only attribute returns the callback that was registered when the subscription was created.

Subscription.connection
This read-only attribute returns the connection that was used to register the subscription when it was created.

Subscription.id
This read-only attribute returns the value 0.

Deprecated since version 6.0: This attribute was never intended to be exposed and will be removed in cx_Oracle
7.

Subscription.ipAddress
This read-only attribute returns the IP address used for callback notifications from the database server. If not set
during construction, this value is None.

New in version 6.4.

Subscription.name
This read-only attribute returns the name used to register the subscription when it was created.

New in version 6.4.

Subscription.namespace
This read-only attribute returns the namespace used to register the subscription when it was created.

Subscription.operations
This read-only attribute returns the operations that will send notifications for each table or query that is registered
using this subscription.

Subscription.port
This read-only attribute returns the port used for callback notifications from the database server. If not set during
construction, this value is zero.

51

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Subscription.protocol
This read-only attribute returns the protocol used to register the subscription when it was created.

Subscription.qos
This read-only attribute returns the quality of service flags used to register the subscription when it was created.

Subscription.registerquery(statement[, args])
Register the query for subsequent notification when tables referenced by the query are changed. This behaves
similarly to cursor.execute() but only queries are permitted and the args parameter must be a sequence or dic-
tionary. If the qos parameter included the flag cx_Oracle.SUBSCR_QOS_QUERY when the subscription was
created, then the ID for the registered query is returned; otherwise, None is returned.

Subscription.timeout
This read-only attribute returns the timeout (in seconds) that was specified when the subscription was created.
A value of 0 indicates that there is no timeout.

7.1 Message Objects

Note: This object is created internally when notification is received and passed to the callback procedure specified
when a subscription is created.

Message.consumerName
This read-only attribute returns the name of the consumer which generated the notification. It will be populated
if the subscription was created with the namespace cx_Oracle.SUBSCR_NAMESPACE_AQ and the queue is
a multiple consumer queue.

New in version 6.4.

Message.dbname
This read-only attribute returns the name of the database that generated the notification.

Message.queries
This read-only attribute returns a list of message query objects that give information about query result sets
changed for this notification. This attribute will be None if the qos parameter did not include the flag
SUBSCR_QOS_QUERY when the subscription was created.

Message.queueName
This read-only attribute returns the name of the queue which generated the notification. It will only be populated
if the subscription was created with the namespace cx_Oracle.SUBSCR_NAMESPACE_AQ.

New in version 6.4.

Message.registered
This read-only attribute returns whether the subscription which generated this notification is still registered
with the database. The subscription is automatically deregistered with the database when the subscription
timeout value is reached or when the first notification is sent (when the quality of service flag cx_Oracle.
SUBSCR_QOS_DEREG_NFY is used).

New in version 6.4.

Message.subscription
This read-only attribute returns the subscription object for which this notification was generated.

Message.tables
This read-only attribute returns a list of message table objects that give information about the tables changed
for this notification. This attribute will be None if the qos parameter included the flag SUBSCR_QOS_QUERY
when the subscription was created.

52 Chapter 7. Subscription Object

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Message.txid
This read-only attribute returns the id of the transaction that generated the notification.

Message.type
This read-only attribute returns the type of message that has been sent. See the constants section on event types
for additional information.

7.2 Message Table Objects

Note: This object is created internally for each table changed when notification is received and is found in the tables
attribute of message objects, and the tables attribute of message query objects.

MessageTable.name
This read-only attribute returns the name of the table that was changed.

MessageTable.operation
This read-only attribute returns the operation that took place on the table that was changed.

MessageTable.rows
This read-only attribute returns a list of message row objects that give information about the rows changed on the
table. This value is only filled in if the qos parameter to the Connection.subscribe() method included
the flag SUBSCR_QOS_ROWIDS.

7.3 Message Row Objects

Note: This object is created internally for each row changed on a table when notification is received and is found in
the rows attribute of message table objects.

MessageRow.operation
This read-only attribute returns the operation that took place on the row that was changed.

MessageRow.rowid
This read-only attribute returns the rowid of the row that was changed.

7.4 Message Query Objects

Note: This object is created internally for each query result set changed when notification is received and is found in
the queries attribute of message objects.

MessageQuery.id
This read-only attribute returns the query id of the query for which the result set changed. The value will match
the value returned by Subscription.registerquery when the related query was registered.

MessageQuery.operation
This read-only attribute returns the operation that took place on the query result set that was changed. Valid
values for this attribute are EVENT_DEREG and EVENT_QUERYCHANGE.

7.2. Message Table Objects 53

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

MessageQuery.tables
This read-only attribute returns a list of message table objects that give information about the table changes that
caused the query result set to change for this notification.

54 Chapter 7. Subscription Object

CHAPTER 8

LOB Objects

Note: This object is an extension the DB API. It is returned whenever Oracle CLOB, BLOB and BFILE columns are
fetched.

LOB.close()
Close the LOB. Call this when writing is completed so that the indexes associated with the LOB can be updated
– but only if open() was called first.

LOB.fileexists()
Return a boolean indicating if the file referenced by the BFILE type LOB exists.

LOB.getchunksize()
Return the chunk size for the internal LOB. Reading and writing to the LOB in chunks of multiples of this size
will improve performance.

LOB.getfilename()
Return a two-tuple consisting of the directory alias and file name for a BFILE type LOB.

LOB.isopen()
Return a boolean indicating if the LOB has been opened using the method open().

LOB.open()
Open the LOB for writing. This will improve performance when writing to a LOB in chunks and there are
functional or extensible indexes associated with the LOB. If this method is not called, each write will perform
an open internally followed by a close after the write has been completed.

LOB.read([offset=1[, amount]])
Return a portion (or all) of the data in the LOB object. Note that the amount and offset are in bytes for BLOB
and BFILE type LOBs and in UCS-2 code points for CLOB and NCLOB type LOBs. UCS-2 code points are
equivalent to characters for all but supplemental characters. If supplemental characters are in the LOB, the offset
and amount will have to be chosen carefully to avoid splitting a character.

LOB.setfilename(dirAlias, name)
Set the directory alias and name of the BFILE type LOB.

55

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

LOB.size()
Returns the size of the data in the LOB object. For BLOB and BFILE type LOBs this is the number of bytes.
For CLOB and NCLOB type LOBs this is the number of UCS-2 code points. UCS-2 code points are equivalent
to characters for all but supplemental characters.

LOB.trim([newSize=0])
Trim the LOB to the new size.

LOB.write(data[, offset=1])
Write the data to the LOB object at the given offset. The offset is in bytes for BLOB type LOBs and in UCS-2
code points for CLOB and NCLOB type LOBs. UCS-2 code points are equivalent to characters for all but
supplemental characters. If supplemental characters are in the LOB, the offset will have to be chosen carefully
to avoid splitting a character. Note that if you want to make the LOB value smaller, you must use the trim()
function.

56 Chapter 8. LOB Objects

CHAPTER 9

Object Type Objects

Note: This object is an extension to the DB API. It is returned by the Connection.gettype() call and is
available as the Variable.type for variables containing Oracle objects.

ObjectType([sequence])
The object type may be called directly and serves as an alternative way of calling newobject().

ObjectType.attributes
This read-only attribute returns a list of the attributes that make up the object type. Each attribute has a name
attribute on it.

ObjectType.iscollection
This read-only attribute returns a boolean indicating if the object type refers to a collection or not.

ObjectType.name
This read-only attribute returns the name of the type.

ObjectType.newobject([sequence])
Return a new Oracle object of the given type. This object can then be modified by setting its attributes and then
bound to a cursor for interaction with Oracle. If the object type refers to a collection, a sequence may be passed
and the collection will be initialized with the items in that sequence.

ObjectType.schema
This read-only attribute returns the name of the schema that owns the type.

9.1 Object Objects

Note: This object is an extension to the DB API. It is returned by the ObjectType.newobject() call and can
be bound to variables of type OBJECT. Attributes can be retrieved and set directly.

57

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

Object.append(element)
Append an element to the collection object. If no elements exist in the collection, this creates an element at
index 0; otherwise, it creates an element immediately following the highest index available in the collection.

Object.aslist()
Return a list of each of the collection’s elements in index order.

Object.copy()
Create a copy of the object and return it.

Object.delete(index)
Delete the element at the specified index of the collection. If the element does not exist or is otherwise invalid,
an error is raised. Note that the indices of the remaining elements in the collection are not changed. In other
words, the delete operation creates holes in the collection.

Object.exists(index)
Return True or False indicating if an element exists in the collection at the specified index.

Object.extend(sequence)
Append all of the elements in the sequence to the collection. This is the equivalent of performing append()
for each element found in the sequence.

Object.first()
Return the index of the first element in the collection. If the collection is empty, None is returned.

Object.getelement(index)
Return the element at the specified index of the collection. If no element exists at that index, an exception is
raised.

Object.last()
Return the index of the last element in the collection. If the collection is empty, None is returned.

Object.next(index)
Return the index of the next element in the collection following the specified index. If there are no elements in
the collection following the specified index, None is returned.

Object.prev(index)
Return the index of the element in the collection preceding the specified index. If there are no elements in the
collection preceding the specified index, None is returned.

Object.setelement(index, value)
Set the value in the collection at the specified index to the given value.

Object.size()
Return the number of elements in the collection.

Object.trim(num)
Remove the specified number of elements from the end of the collection.

58 Chapter 9. Object Type Objects

CHAPTER 10

Advanced Queuing

10.1 Dequeue Options

Note: This object is an extension to the DB API. It is returned by the Connection.deqoptions() call and is
used in calls to Connection.deq().

DeqOptions.condition
This attribute specifies a boolean expression similar to the where clause of a SQL query. The boolean expression
can include conditions on message properties, user data properties and PL/SQL or SQL functions. The default
is to have no condition specified.

DeqOptions.consumername
This attribute specifies the name of the consumer. Only messages matching the consumer name will be accessed.
If the queue is not set up for multiple consumers this attribute should not be set. The default is to have no
consumer name specified.

DeqOptions.correlation
This attribute specifies the correlation identifier of the message to be dequeued. Special pattern-matching char-
acters, such as the percent sign (%) and the underscore (_), can be used. If multiple messages satisfy the pattern,
the order of dequeuing is indeterminate. The default is to have no correlation specified.

DeqOptions.deliverymode
This write-only attribute specifies what types of messages should be dequeued. It should be one of the values
MSG_PERSISTENT (default), MSG_BUFFERED or MSG_PERSISTENT_OR_BUFFERED.

DeqOptions.mode
This attribute specifies the locking behaviour associated with the dequeue operation. It should be one of the
values DEQ_BROWSE, DEQ_LOCKED, DEQ_REMOVE (default), or DEQ_REMOVE_NODATA.

DeqOptions.msgid
This attribute specifies the identifier of the message to be dequeued. The default is to have no message identifier
specified.

59

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

DeqOptions.navigation
This attribute specifies the position of the message that is retrieved. It should be one of the values
DEQ_FIRST_MSG, DEQ_NEXT_MSG (default), or DEQ_NEXT_TRANSACTION .

DeqOptions.transformation
This attribute specifies the name of the transformation that must be applied after the message is dequeued from
the database but before it is returned to the calling application. The transformation must be created using
dbms_transform. The default is to have no transformation specified.

DeqOptions.visibility
This attribute specifies the transactional behavior of the dequeue request. It should be one of the values
DEQ_ON_COMMIT (default) or DEQ_IMMEDIATE. This attribute is ignored when using the DEQ_BROWSE
mode. Note the value of autocommit is always ignored.

DeqOptions.wait
This attribute specifies the time to wait, in seconds, for a message matching the search criteria to become
available for dequeuing. One of the values DEQ_NO_WAIT or DEQ_WAIT_FOREVER can also be used. The
default is DEQ_WAIT_FOREVER.

10.2 Enqueue Options

Note: This object is an extension to the DB API. It is returned by the Connection.enqoptions() call and is
used in calls to Connection.enq().

EnqOptions.deliverymode
This write-only attribute specifies what type of messages should be enqueued. It should be one of the values
MSG_PERSISTENT (default) or MSG_BUFFERED.

EnqOptions.transformation
This attribute specifies the name of the transformation that must be applied before the message is enqueued into
the database. The transformation must be created using dbms_transform. The default is to have no transforma-
tion specified.

EnqOptions.visibility
This attribute specifies the transactional behavior of the enqueue request. It should be one of the values
ENQ_ON_COMMIT (default) or ENQ_IMMEDIATE. Note the value of autocommit is ignored.

10.3 Message Properties

Note: This object is an extension to the DB API. It is returned by the Connection.msgproperties() call and
is used in calls to Connection.deq() and Connection.enq().

MessageProperties.attempts
This read-only attribute specifies the number of attempts that have been made to dequeue the message.

MessageProperties.correlation
This attribute specifies the correlation used when the message was enqueued.

MessageProperties.delay
This attribute specifies the number of seconds to delay an enqueued message. Any integer is acceptable but the
constant MSG_NO_DELAY can also be used indicating that the message is available for immediate dequeuing.

60 Chapter 10. Advanced Queuing

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

MessageProperties.deliverymode
This read-only attribute specifies the type of message that was dequeued. It will be one of the values
MSG_PERSISTENT or MSG_BUFFERED.

MessageProperties.enqtime
This read-only attribute specifies the time that the message was enqueued.

MessageProperties.exceptionq
This attribute specifies the name of the queue to which the message is moved if it cannot be processed success-
fully. Messages are moved if the number of unsuccessful dequeue attempts has exceeded the maximum number
of retries or if the message has expired. All messages in the exception queue are in the MSG_EXPIRED state.
The default value is the name of the exception queue associated with the queue table.

MessageProperties.expiration
This attribute specifies, in seconds, how long the message is available for dequeuing. This attribute is an offset
from the delay attribute. Expiration processing requires the queue monitor to be running. Any integer is accepted
but the constant MSG_NO_EXPIRATION can also be used indicating that the message never expires.

MessageProperties.msgid
This attribute specifies the id of the message in the last queue that generated this message.

MessageProperties.priority
This attribute specifies the priority of the message. A smaller number indicates a higher priority. The priority
can be any integer, including negative numbers. The default value is zero.

MessageProperties.state
This read-only attribute specifies the state of the message at the time of the dequeue. It will be one of the values
MSG_WAITING, MSG_READY , MSG_PROCESSED or MSG_EXPIRED.

10.3. Message Properties 61

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

62 Chapter 10. Advanced Queuing

CHAPTER 11

What’s New

11.1 cx_Oracle 6.0

This document contains a summary of the changes in cx_Oracle 6 compared to cx_Oracle 5.3. cx_Oracle 6.0 was
released on August 14, 2017. See the release notes for complete details.

11.1.1 Highlights

• Has been re-implemented to use the new ODPI-C abstraction layer for Oracle Database. The cx_Oracle API is
unchanged. The cx_Oracle design, build and linking process has improved because of ODPI-C.

• Now has Python Wheels available for install. This is made possible by the ODPI-C architecture. Windows
installers and Linux RPMs are no longer produced since PyPI no longer supports them.

• Has less code in Python’s Global Interpreter Lock, giving better scalability.

• Added support for universal rowids.

• Added support for DML returning of multiple rows.

• Now associates LOB locators to LOB objects so they are not overwritten on database round trips.

11.1.2 Installation Changes

• On Linux, cx_Oracle 6 no longer uses instant client RPMs automatically. You must set LD_LIBRARY_PATH
or use ldconfig to locate the Oracle Client library.

• On platforms other than Windows, if ORACLE_HOME is set (in a database or full client installation), remove
requirement to set LD_LIBRARY_PATH in order to locate the Oracle Client library (issue 20).

63

https://oracle.github.io/odpi
https://github.com/oracle/odpi/issues/20

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

11.1.3 Connection Management Enhancements

• Prevent closing the connection when there are any open statements or LOBs and add new error “DPI-1054:
connection cannot be closed when open statements or LOBs exist” when this situation is detected; this is needed
to prevent crashes under certain conditions when statements or LOBs are being acted upon while at the same
time (in another thread) a connection is being closed; it also prevents leaks of statements and LOBs when a
connection is returned to a session pool.

• Added attribute SessionPool.stmtcachesize to support getting and setting the default statement cache
size for connections in the pool.

• Added attribute Connection.dbop to support setting the database operation that is to be monitored.

• Added attribute Connection.handle to facilitate testing the creation of a connection using a OCI service
context handle.

• Added parameters tag and matchanytag to the cx_Oracle.connect() and SessionPool.acquire()
methods and added parameters tag and retag to the SessionPool.release() method in order to support
session tagging.

• Added parameter edition to the cx_Oracle.SessionPool() method.

• Added parameters region, sharding_key and super_sharding_key to the cx_Oracle.makedsn() method to
support connecting to a sharded database (new in Oracle Database 12.2).

• Removed requirement that encoding and nencoding both be specified when creating a connection or session
pool. The missing value is set to its default value if one of the values is set and the other is not (issue 36).

• Permit use of both string and unicode for Python 2.7 for creating session pools and for changing passwords
(issue 23).

11.1.4 Data Type and Data Handling Enhancements

• Added attributes Variable.actualElements and Variable.values to variables.

• Added support for smallint and float data types in Oracle objects, as requested (issue 4).

• Added support for getting/setting attributes of objects or element values in collections that contain LOBs, BI-
NARY_FLOAT values, BINARY_DOUBLE values and NCHAR and NVARCHAR2 values. The error message
for any types that are not supported has been improved as well.

• An exception is no longer raised when a collection is empty for methods Object.first() and Object.
last(). Instead, the value None is returned to be consistent with the methods Object.next() and
Object.prev().

• Removed requirement for specifying a maximum size when fetching LONG or LONG raw columns. This
also allows CLOB, NCLOB, BLOB and BFILE columns to be fetched as strings or bytes without needing to
specify a maximum size. The method Cursor.setoutputsize() no longer does anything, since ODPI-C
automatically manages buffer sizes of LONG and LONG RAW columns.

• Enable temporary LOB caching in order to avoid disk I/O as suggested (issue 10).

11.1.5 Error Handling Enhancements

• Provide improved error message when OCI environment cannot be created, such as when the oraaccess.xml file
cannot be processed properly.

• Define exception classes on the connection object in addition to at module scope in order to simplify error
handling in multi-connection environments, as specified in the Python DB API.

64 Chapter 11. What’s New

https://github.com/oracle/python-cx_Oracle/issues/36
https://github.com/oracle/python-cx_Oracle/issues/23
https://github.com/oracle/python-cx_Oracle/issues/4
https://github.com/oracle/odpi/issues/10

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

11.1.6 Test Enhancements

• Reworked test suite and samples so that they are independent of each other and so that the SQL scripts used to
create/drop schemas are easily adjusted to use different schema names, if desired.

• Updated DB API test suite stub to support Python 3.

11.1.7 Removals

• Dropped deprecated parameter twophase from the cx_Oracle.connect() method. Applications should
set the Connection.internal_name and Connection.external_name attributes instead to a value
appropriate to the application.

• Dropped deprecated parameters action, module and clientinfo from the cx_Oracle.connect() method.
The appcontext parameter should be used instead as shown in this sample.

• Dropped deprecated attribute numbersAsString from cursor objects. Use an output type handler instead as
shown in this sample.

• Dropped deprecated attributes cqqos and rowids from subscription objects. Use the qos attribute instead as
shown in this sample.

• Dropped deprecated parameters cqqos and rowids from the Connection.subscribe() method. Use the
qos parameter instead as shown in this sample.

11.1. cx_Oracle 6.0 65

https://github.com/oracle/python-cx_Oracle/blob/master/samples/AppContext.py
https://github.com/oracle/python-cx_Oracle/blob/master/samples/ReturnNumbersAsDecimals.py
https://github.com/oracle/python-cx_Oracle/blob/master/samples/QueryChangeNotification.py
https://github.com/oracle/python-cx_Oracle/blob/master/samples/QueryChangeNotification.py

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

66 Chapter 11. What’s New

CHAPTER 12

cx_Oracle Release Notes

12.1 6.x releases

12.1.1 Version 6.4 (July 2018)

1. Update to ODPI-C 2.4.1.

• Added support for grouping subscriptions. See parameters groupingClass, groupingValue and grouping-
Type to function Connection.subscribe().

• Added support for specifying the IP address a subscription should use instead of having the Oracle
Client library determine the IP address on its own. See parameter ipAddress to function Connection.
subscribe().

• Added support for subscribing to notifications when messages are available to dequeue in an AQ queue.
The new constant cx_Oracle.SUBSCR_NAMESPACE_AQ should be passed to the namespace param-
eter of function Connection.subscribe() in order to get this functionality. Attributes Message.
queueName and Message.consumerName will be populated in notification messages that are re-
ceived when this namespace is used.

• Added attribute Message.registered to let the notification callback know when the subscription that
generated the notification is no longer registered with the database.

• Added support for timed waits when acquiring a session from a session pool. Use the new constant
cx_Oracle.SPOOL_ATTRVAL_TIMEDWAIT in the parameter getmode to function cx_Oracle.
SessionPool() along with the new parameter waitTimeout.

• Added support for specifying the timeout and maximum lifetime session for session pools when they are
created using function cx_Oracle.SessionPool(). Previously the pool had to be created before
these values could be changed.

• Avoid memory leak when dequeuing from an empty queue.

• Ensure that the row count for queries is reset to zero when the statement is executed (issue 193).

67

https://oracle.github.io/odpi/doc/releasenotes.html#version-2-4-1-july-2-2018
https://github.com/oracle/python-cx_Oracle/issues/193

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

• If the statement should be deleted from the statement cache, first check to see that there is a statement
cache currently being used; otherwise, the error “ORA-24300: bad value for mode” will be raised under
certain conditions.

2. Added support for using the cursor as a context manager (issue 190).

3. Added support for specifying the “errors” parameter to the decode() that takes place internally when fetching
strings from the database (issue 162).

4. Added support for specifying an integer for the parameters argument to Cursor.executemany(). This
allows for batch execution when no parameters are required or when parameters have previously been bound.
This replaces Cursor.executemanyprepared() (which is now deprecated and will be removed in cx_Oracle 7).

5. Adjusted the binding of booleans so that outside of PL/SQL they are bound as integers (issue 181).

6. Added support for binding decimal.Decimal values to cx_Oracle.NATIVE_FLOAT as requested (issue 184).

7. Added checks on passing invalid type parameters to methods Cursor.arrayvar(), Cursor.
callfunc() and Cursor.setinputsizes().

8. Corrected handling of cursors and rowids in DML Returning statements.

9. Added sample from David Lapp demonstrating the use of GeoPandas with SDO_GEOMETRY and a sample
for demonstrating the use of REF cursors.

10. Adjusted samples and documentation for clarity.

11. Added additional test cases.

12.1.2 Version 6.3.1 (May 2018)

1. Update to ODPI-C 2.3.2.

• Ensure that a call to unregister a subscription only occurs if the subscription is still registered.

• Ensure that before a statement is executed any buffers used for DML returning statments are reset.

2. Ensure that behavior with cx_Oracle.__future__.dml_ret_array_val not set or False is the same as the behavior
in cx_Oracle 6.2 (issue 176).

12.1.3 Version 6.3 (April 2018)

1. Update to ODPI-C 2.3.1.

• Fixed binding of LONG data (values exceeding 32KB) when using the function Cursor.
executemany().

• Added code to verify that a CQN subscription is open before permitting it to be used. Error “DPI-1060:
subscription was already closed” will now be raised if an attempt is made to use a subscription that was
closed earlier.

• Stopped attempting to unregister a CQN subscription before it was completely registered. This prevents
errors encountered during registration from being masked by an error stating that the subscription has not
been registered!

• Added error “DPI-1061: edition is not supported when a new password is specified” to clarify the fact that
specifying an edition and a new password at the same time is not supported when creating a connection.
Previously the edition value was simply ignored.

• Improved error message when older OCI client libraries are being used that don’t have the method OCI-
ClientVersion().

68 Chapter 12. cx_Oracle Release Notes

https://github.com/oracle/python-cx_Oracle/issues/190
https://github.com/oracle/python-cx_Oracle/issues/162
https://github.com/oracle/python-cx_Oracle/issues/181
https://github.com/oracle/python-cx_Oracle/issues/184
https://oracle.github.io/odpi/doc/releasenotes.html#version-2-3-2-may-7-2018
https://github.com/oracle/python-cx_Oracle/issues/176
https://oracle.github.io/odpi/doc/releasenotes.html#version-2-3-1-april-25-2018

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

• Fixed the handling of ANSI types REAL and DOUBLE PRECISION as implemented by Oracle. These
types are just subtypes of NUMBER and are different from BINARY_FLOAT and BINARY_DOUBLE
(issue 163).

• Fixed support for true heterogeneous session pools that use different user/password combinations for each
session acquired from the pool.

• Added error message indicating that setting either of the parameters arraydmlrowcounts and batcherrors to
True in Cursor.executemany() is only supported with insert, update, delete and merge statements.

2. Fixed support for getting the OUT values of bind variables bound to a DML Returning statement when call-
ing the function Cursor.executemany(). Note that the attribute dml_ret_array_val in cx_Oracle.
__future__ must be set to True first.

3. Added support for binding integers and floats as cx_Oracle.NATIVE_FLOAT.

4. A cx_Oracle._Error object is now the value of all cx_Oracle exceptions raised by cx_Oracle. (issue 51).

5. Added support for building cx_Oracle with a pre-compiled version of ODPI-C, as requested (issue 103).

6. Default values are now provided for all parameters to cx_Oracle.SessionPool().

7. Improved error message when an unsupported Oracle type is encountered.

8. The Python GIL is now prevented from being held while performing a round trip for the call to get the attribute
Connection.version (issue 158).

9. Added check for the validity of the year for Python 2.x since it doesn’t do that itself like Python 3.x does (issue
166).

10. Adjusted documentation to provide additional information on the use of Cursor.executemany() as re-
quested (issue 153).

11. Adjusted documentation to state that batch errors and array DML row counts can only be used with insert,
update, delete and merge statements (issue 31).

12. Updated tutorial to import common connection information from files in order to make setup a bit more generic.

12.1.4 Version 6.2.1 (March 2018)

1. Make sure cxoModule.h is included in the source archive (issue 155).

12.1.5 Version 6.2 (March 2018)

1. Update to ODPI-C 2.2.1.

• eliminate error “DPI-1054: connection cannot be closed when open statements or LOBs exist” (issue 138).

• avoid a round trip to the database when a connection is released back to the pool by preventing a rollback
from being called when no transaction is in progress.

• improve error message when the use of bind variables is attempted with DLL statements, which is not
supported by Oracle.

• if an Oracle object is retrieved from an attribute of another Oracle object or a collection, prevent the
“owner” from being destroyed until the object that was retrieved has itself been destroyed.

• correct handling of boundary numbers 1e126 and -1e126

• eliminate memory leak when calling Connection.enq() and Connection.deq()

• eliminate memory leak when setting NCHAR and NVARCHAR attributes of objects.

12.1. 6.x releases 69

https://github.com/oracle/python-cx_Oracle/issues/163
https://github.com/oracle/python-cx_Oracle/issues/51
https://github.com/oracle/python-cx_Oracle/issues/103
https://github.com/oracle/python-cx_Oracle/issues/158
https://github.com/oracle/python-cx_Oracle/issues/166
https://github.com/oracle/python-cx_Oracle/issues/166
https://github.com/oracle/python-cx_Oracle/issues/153
https://github.com/oracle/python-cx_Oracle/issues/31
https://github.com/oracle/python-cx_Oracle/issues/155
https://oracle.github.io/odpi/doc/releasenotes.html#version-2-2-1-march-5-2018
https://github.com/oracle/python-cx_Oracle/issues/138

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

• eliminate memory leak when fetching collection objects from the database.

2. Added support for creating a temporary CLOB, BLOB or NCLOB via the method Connection.
createlob().

3. Added support for binding a LOB value directly to a cursor.

4. Added support for closing the connection when reaching the end of a with code block controlled by the con-
nection as a context manager, but in a backwards compatible way (issue 113). See cx_Oracle.__future__
for more information.

5. Reorganized code to simplify continued maintenance and consolidate transformations to/from Python objects.

6. Ensure that the number of elements in the array is not lost when the buffer size is increased to accommodate
larger strings.

7. Corrected support in Python 3.x for cursor.parse() by permitting a string to be passed, instead of incorrectly
requiring a bytes object.

8. Eliminate reference leak with LOBs acquired from attributes of objects or elements of collections.

9. Eliminate reference leak when extending an Oracle collection.

10. Documentation improvements.

11. Added test cases to the test suite.

12.1.6 Version 6.1 (December 2017)

1. Update to ODPI-C 2.1.

• Support was added for accessing sharded databases via sharding keys (new in Oracle 12.2). NOTE: the
underlying OCI library has a bug when using standalone connections. There is a small memory leak
proportional to the number of connections created/dropped. There is no memory leak when using session
pools, which is recommended.

• Added options for authentication with SYSBACKUP, SYSDG, SYSKM and SYSRAC, as requested (issue
101).

• Attempts to release statements or free LOBs after the connection has been closed (by, for example, killing
the session) are now prevented.

• An error message was added when specifying an edition and a connection class since this combination is
not supported.

• Attempts to close the session for connections created with an external handle are now prevented.

• Attempting to ping a database earlier than 10g results in ORA-1010: invalid OCI operation, but that
implies a response from the database and therefore a successful ping, so treat it that way! (see https:
//github.com/rana/ora/issues/224 for more information).

• Support was added for converting numeric values in an object type attribute to integer and text, as requested
(ODPI-C issue 35).

• Setting attributes DeqOptions.msgId and MessageProperties.msgId now works as expected.

• The overflow check when using double values (Python floats) as input to float attributes of objects or
elements of collections was removed as it didn’t work anyway and is a well-known issue that cannot be
prevented without removing desired functionality. The developer should ensure that the source value falls
within the limits of floats, understand the consequent precision loss or use a different data type.

• Variables of string/raw types are restricted to 2 bytes less than 1 GB (1,073,741,822 bytes), since OCI
cannot handle more than that currently.

70 Chapter 12. cx_Oracle Release Notes

https://github.com/oracle/python-cx_Oracle/issues/113
https://oracle.github.io/odpi/doc/releasenotes.html#version-2-1-december-12-2017
https://github.com/oracle/python-cx_Oracle/issues/101
https://github.com/oracle/python-cx_Oracle/issues/101
https://github.com/rana/ora/issues/224
https://github.com/rana/ora/issues/224
https://github.com/oracle/odpi/issues/35

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

• Support was added for identifying the id of the transaction which spawned a CQN subscription message,
as requested (ODPI-C issue 32).

• Corrected use of subscription port number (issue 115).

• Problems reported with the usage of FormatMessage() on Windows were addressed (ODPI-C issue 47).

• On Windows, if oci.dll cannot be loaded because it is the wrong architecture (32-bit vs 64-bit), attempt to
find the offending DLL and include the full path of the DLL in the message, as suggested. (ODPI-C issue
49).

• Force OCI prefetch to always use the value 2; the OCI default is 1 but setting the ODPI-C default to 2
ensures that single row fetches don’t require an extra round trip to determine if there are more rows to
fetch; this change also reduces the potential memory consumption when fetchArraySize was set to a large
value and also avoids performance issues discovered with larger values of prefetch.

2. Fix build with PyPy 5.9.0-alpha0 in libpython mode (PR 54).

3. Ensure that the edition is passed through to the database when a session pool is created.

4. Corrected handling of Python object references when an invalid keyword parameter is passed to cx_Oracle.
SessionPool().

5. Corrected handling of Connection.handle and the handle parameter to cx_Oracle.connect() on
Windows.

6. Documentation improvements.

7. Added test cases to the test suite.

12.1.7 Version 6.0.3 (November 2017)

1. Update to ODPI-C 2.0.3.

• Prevent use of unitialized data in certain cases (issue 77).

• Attempting to ping a database earlier than 10g results in error “ORA-1010: invalid OCI operation”, but
that implies a response from the database and therefore a successful ping, so treat it that way!

• Correct handling of conversion of some numbers to NATIVE_FLOAT.

• Prevent use of NaN with Oracle numbers since it produces corrupt data (issue 91).

• Verify that Oracle objects bound to cursors, fetched from cursors, set in object attributes or appended to
collection objects are of the correct type.

• Correct handling of NVARCHAR2 when used as attributes of Oracle objects or as elements of collections.

2. Ensure that a call to setinputsizes() with an invalid type prior to a call to executemany() does not result in a type
error, but instead gracefully ignores the call to setinputsizes() as required by the DB API (issue 75).

3. Check variable array size when setting variable values and raise IndexError, as is already done for getting
variable values.

12.1.8 Version 6.0.2 (August 2017)

1. Update to ODPI-C 2.0.2.

• Don’t prevent connection from being explicitly closed when a fatal error has taken place (issue 67).

• Correct handling of objects when dynamic binding is performed.

• Process deregistration events without an error.

12.1. 6.x releases 71

https://github.com/oracle/odpi/issues/32
https://github.com/oracle/python-cx_Oracle/issues/115
https://github.com/oracle/odpi/issues/47
https://github.com/oracle/odpi/issues/49
https://github.com/oracle/odpi/issues/49
https://github.com/oracle/python-cx_Oracle/pull/54
https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-3-november-6-2017
https://github.com/oracle/python-cx_Oracle/issues/77
https://github.com/oracle/python-cx_Oracle/issues/91
https://github.com/oracle/python-cx_Oracle/issues/75
https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-2-august-30-2017
https://github.com/oracle/python-cx_Oracle/issues/67

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

• Eliminate memory leak when creating objects.

2. Added missing type check to prevent coercion of decimal to float (issue 68).

3. On Windows, sizeof(long) = 4, not 8, which meant that integers between 10 and 18 digits were not converted to
Python correctly (issue 70).

4. Eliminate memory leak when repeatedly executing the same query.

5. Eliminate segfault when attempting to reuse a REF cursor that has been closed.

6. Updated documentation.

12.1.9 Version 6.0.1 (August 2017)

1. Update to ODPI-C 2.0.1.

• Ensure that queries registered via Subscription.registerquery() do not prevent the associated
connection from being closed (ODPI-C issue 27).

• Deprecated attribute Subscription.id as it was never intended to be exposed (ODPI-C issue 28). It
will be dropped in version 6.1.

• Add support for DML Returning statements that require dynamically allocated variable data (such as
CLOBs being returned as strings).

2. Correct packaging of Python 2.7 UCS4 wheels on Linux (issue 64).

3. Updated documentation.

12.1.10 Version 6.0 (August 2017)

See What’s New for a summary of the changes between cx_Oracle 5.3 and cx_Oracle 6.0.

1. Update to ODPI-C 2.0.

• Prevent closing the connection when there are any open statements or LOBs and add new error “DPI-1054:
connection cannot be closed when open statements or LOBs exist” when this situation is detected; this is
needed to prevent crashes under certain conditions when statements or LOBs are being acted upon while
at the same time (in another thread) a connection is being closed; it also prevents leaks of statements and
LOBs when a connection is returned to a session pool.

• On platforms other than Windows, if the regular method for loading the Oracle Client libraries fails, try
using $ORACLE_HOME/lib/libclntsh.so (ODPI-C issue 20).

• Use the environment variable DPI_DEBUG_LEVEL at runtime, not compile time.

• Added support for DPI_DEBUG_LEVEL_ERRORS (reports errors and has the value 8) and
DPI_DEBUG_LEVEL_SQL (reports prepared SQL statement text and has the value 16) in order to further
improve the ability to debug issues.

• Correct processing of Cursor.scroll() in some circumstances.

2. Delay initialization of the ODPI-C library until the first standalone connection or session pool is created so that
manipulation of the environment variable NLS_LANG can be performed after the module has been imported;
this also has the added benefit of reducing the number of errors that can take place when the module is imported.

3. Prevent binding of null values from generating the exception “ORA-24816: Expanded non LONG bind data
supplied after actual LONG or LOB column” in certain circumstances (issue 50).

4. Added information on how to run the test suite (issue 33).

72 Chapter 12. cx_Oracle Release Notes

https://github.com/oracle/python-cx_Oracle/issues/68
https://github.com/oracle/python-cx_Oracle/issues/70
https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-1-august-18-2017
https://github.com/oracle/odpi/issues/27
https://github.com/oracle/odpi/issues/28
https://github.com/oracle/python-cx_Oracle/issues/64
https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-august-14-2017
https://github.com/oracle/odpi/issues/20
https://github.com/oracle/python-cx_Oracle/issues/50
https://github.com/oracle/python-cx_Oracle/issues/33

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

5. Documentation improvements.

12.1.11 Version 6.0 rc 2 (July 2017)

1. Update to ODPI-C rc 2.

• Provide improved error message when OCI environment cannot be created, such as when the oraaccess.xml
file cannot be processed properly.

• On Windows, convert system message to Unicode first, then to UTF-8; otherwise, the error message
returned could be in a mix of encodings (issue 40).

• Corrected support for binding decimal values in object attribute values and collection element values.

• Corrected support for binding PL/SQL boolean values to PL/SQL procedures with Oracle client 11.2.

2. Define exception classes on the connection object in addition to at module scope in order to simplify error
handling in multi-connection environments, as specified in the Python DB API.

3. Ensure the correct encoding is used for setting variable values.

4. Corrected handling of CLOB/NCLOB when using different encodings.

5. Corrected handling of TIMESTAMP WITH TIME ZONE attributes on objects.

6. Ensure that the array position passed to var.getvalue() does not exceed the number of elements allocated in the
array.

7. Reworked test suite and samples so that they are independent of each other and so that the SQL scripts used to
create/drop schemas are easily adjusted to use different schema names, if desired.

8. Updated DB API test suite stub to support Python 3.

9. Added additional test cases and samples.

10. Documentation improvements.

12.1.12 Version 6.0 rc 1 (June 2017)

1. Update to ODPI-C rc 1.

2. The method Cursor.setoutputsize() no longer needs to do anything, since ODPI-C automatically man-
ages buffer sizes of LONG and LONG RAW columns.

3. Handle case when both precision and scale are zero, as occurs when retrieving numeric expressions (issue 34).

4. OCI requires that both encoding and nencoding have values or that both encoding and encoding do
not have values. These parameters are used in functions cx_Oracle.connect() and cx_Oracle.
SessionPool(). The missing value is set to its default value if one of the values is set and the other is
not (issue 36).

5. Permit use of both string and unicode for Python 2.7 for creating session pools and for changing passwords
(issue 23).

6. Corrected handling of BFILE LOBs.

7. Add script for dropping test schemas.

8. Documentation improvements.

12.1. 6.x releases 73

https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-0-rc-2-july-20-2017
https://github.com/oracle/python-cx_Oracle/issues/40
https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-0-rc-1-june-16-2017
https://github.com/oracle/python-cx_Oracle/issues/34
https://github.com/oracle/python-cx_Oracle/issues/36
https://github.com/oracle/python-cx_Oracle/issues/23

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

12.1.13 Version 6.0 beta 2 (May 2017)

1. Added support for getting/setting attributes of objects or element values in collections that contain LOBs, BI-
NARY_FLOAT values, BINARY_DOUBLE values and NCHAR and NVARCHAR2 values. The error message
for any types that are not supported has been improved as well.

2. Enable temporary LOB caching in order to avoid disk I/O as suggested.

3. Added support for setting the debug level in ODPI-C, if desirable, by setting environment variable
DPI_DEBUG_LEVEL prior to building cx_Oracle.

4. Correct processing of strings in Cursor.executemany() when a larger string is found after a shorter string
in the list of data bound to the statement.

5. Correct handling of long Python integers that cannot fit inside a 64-bit C integer (issue 18).

6. Correct creation of pool using external authentication.

7. Handle edge case when an odd number of zeroes trail the decimal point in a value that is effectively zero (issue
22).

8. Prevent segfault under load when the attempt to create an error fails.

9. Eliminate resource leak when a standalone connection or pool is freed.

10. Correct typo.

11. Correct handling of REF cursors when the array size is manipulated.

12. Prevent attempts from binding the cursor being executed to itself.

13. Correct reference count handling of parameters when creating a cursor.

14. Correct determination of the names of the bind variables in prepared SQL statements (which behaves a little
differently from PL/SQL statements).

12.1.14 Version 6.0 beta 1 (April 2017)

1. Simplify building cx_Oracle considerably by use of ODPI-C. This means that cx_Oracle can now be built
without Oracle Client header files or libraries and that at runtime cx_Oracle can adapt to Oracle Client 11.2,
12.1 or 12.2 libraries without needing to be rebuilt. This also means that wheels can now be produced and
installed via pip.

2. Added attribute SessionPool.stmtcachesize to support getting and setting the default statement cache
size for connections in the pool.

3. Added attribute Connection.dbop to support setting the database operation that is to be monitored.

4. Added attribute Connection.handle to facilitate testing the creation of a connection using a OCI service
context handle.

5. Added parameters tag and matchanytag to the cx_Oracle.connect() and SessionPool.acquire()
methods and added parameters tag and retag to the SessionPool.release() method in order to support
session tagging.

6. Added parameter edition to the cx_Oracle.SessionPool() method.

7. Added support for universal rowids.

8. Added support for DML Returning of multiple rows.

9. Added attributes Variable.actualElements and Variable.values to variables.

74 Chapter 12. cx_Oracle Release Notes

https://github.com/oracle/odpi/issues/10
https://github.com/oracle/python-cx_Oracle/issues/18
https://github.com/oracle/python-cx_Oracle/issues/22
https://github.com/oracle/python-cx_Oracle/issues/22
https://github.com/oracle/python-cx_Oracle/issues/24
https://oracle.github.io/odpi
https://github.com/oracle/python-cx_Oracle/blob/master/samples/UniversalRowids.py
https://github.com/oracle/python-cx_Oracle/blob/master/samples/DMLReturningMultipleRows.py

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

10. Added parameters region, sharding_key and super_sharding_key to the cx_Oracle.makedsn() method to
support connecting to a sharded database (new in Oracle Database 12.2).

11. Added support for smallint and float data types in Oracle objects, as requested.

12. An exception is no longer raised when a collection is empty for methods Object.first() and Object.
last(). Instead, the value None is returned to be consistent with the methods Object.next() and
Object.prev().

13. If the environment variables NLS_LANG and NLS_NCHAR are being used, they must be set before the
module is imported. Using the encoding and nencoding parameters to the cx_Oracle.connect() and
cx_Oracle.SessionPool() methods is a simpler alternative to setting these environment variables.

14. Removed restriction on fetching LOBs across round trips to the database (eliminates error “LOB variable no
longer valid after subsequent fetch”).

15. Removed requirement for specifying a maximum size when fetching LONG or LONG raw columns. This also
allows CLOB, NCLOB, BLOB and BFILE columns to be fetched as strings or bytes without needing to specify
a maximum size.

16. Dropped deprecated parameter twophase from the cx_Oracle.connect() method. Applications should
set the Connection.internal_name and Connection.external_name attributes instead to a value
appropriate to the application.

17. Dropped deprecated parameters action, module and clientinfo from the cx_Oracle.connect() method.
The appcontext parameter should be used instead as shown in this sample.

18. Dropped deprecated attribute numbersAsString from cursor objects. Use an output type handler instead as
shown in this sample.

19. Dropped deprecated attributes cqqos and rowids from subscription objects. Use the qos attribute instead as
shown in this sample.

20. Dropped deprecated parameters cqqos and rowids from the Connection.subscribe() method. Use the
qos parameter instead as shown in this sample.

12.2 5.x releases

12.2.1 Version 5.3 (March 2017)

1. Added support for Python 3.6.

2. Dropped support for Python versions earlier than 2.6.

3. Dropped support for Oracle clients earlier than 11.2.

4. Added support for fetching implicit results (available in Oracle 12.1)

5. Added support for Transaction Guard (available in Oracle 12.1).

6. Added support for setting the maximum lifetime of pool connections (available in Oracle 12.1).

7. Added support for large row counts (larger than 2 ** 32, available in Oracle 12.1)

8. Added support for advanced queuing.

9. Added support for scrollable cursors.

10. Added support for edition based redefinition.

11. Added support for creating, modifying and binding user defined types and collections.

12.2. 5.x releases 75

https://github.com/oracle/python-cx_Oracle/issues/4
https://github.com/oracle/python-cx_Oracle/blob/master/samples/AppContext.py
https://github.com/oracle/python-cx_Oracle/blob/master/samples/ReturnNumbersAsDecimals.py
https://github.com/oracle/python-cx_Oracle/blob/master/samples/QueryChangeNotification.py
https://github.com/oracle/python-cx_Oracle/blob/master/samples/QueryChangeNotification.py

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

12. Added support for creating, modifying and binding PL/SQL records and collections (available in Oracle 12.1).

13. Added support for binding native integers.

14. Enabled statement caching.

15. Removed deprecated variable attributes maxlength and allocelems.

16. Corrected support for setting the encoding and nencoding parameters when creating a connection and
added support for setting these when creating a session pool. These can now be used instead of setting the
environment variables NLS_LANG and NLS_NCHAR.

17. Use None instead of 0 for items in the Cursor.description attribute that do not have any validity.

18. Changed driver name to match informal driver name standard used by Oracle for other drivers.

19. Add check for maximum of 10,000 parameters when calling a stored procedure or function in order to prevent
a possible improper memory access from taking place.

20. Removed -mno-cygwin compile flag since it is no longer used in newer versions of the gcc compiler for Cygwin.

21. Simplified test suite by combining Python 2 and 3 scripts into one script and separated out 12.1 features into a
single script.

22. Updated samples to use code that works on both Python 2 and 3

23. Added support for pickling/unpickling error objects (Issue #23)

24. Dropped support for callbacks on OCI functions.

25. Removed deprecated types UNICODE, FIXED_UNICODE and LONG_UNICODE (use NCHAR,
FIXED_NCHAR and LONG_NCHAR instead).

26. Increased default array size to 100 (from 50) to match other drivers.

27. Added support for setting the internal_name and external_name on the connection directly. The use
of the twophase parameter is now deprecated. Applications should set the internal_name and external_name
attributes directly to a value appropriate to the application.

28. Added support for using application context when creating a connection. This should be used in
preference to the module, action and clientinfo parameters which are now deprecated.

29. Reworked database change notification and continuous query notification to more closely align with the PL/SQL
implementation and prepare for sending notifications for AQ messages. The following changes were made:

• added constant SUBSCR_QOS_BEST_EFFORT to replace deprecated constant SUB-
SCR_CQ_QOS_BEST_EFFORT

• added constant SUBSCR_QOS_QUERY to replace deprecated constant SUBSCR_CQ_QOS_QUERY

• added constant SUBSCR_QOS_DEREG_NFY to replace deprecated constant SUB-
SCR_QOS_PURGE_ON_NTFN

• added constant SUBSCR_QOS_ROWIDS to replace parameter rowids for method Connection.
subscribe()

• deprecated parameter cqqos for method Connection.subscribe(). The qos parameter should be
used instead.

• dropped constants SUBSCR_CQ_QOS_CLQRYCACHE, SUBSCR_QOS_HAREG, SUB-
SCR_QOS_MULTICBK, SUBSCR_QOS_PAYLOAD, SUBSCR_QOS_REPLICATE, and SUB-
SCR_QOS_SECURE since they were never actually used

30. Deprecated use of the numbersAsStrings attribute on cursors. An output type handler should be used instead.

76 Chapter 12. cx_Oracle Release Notes

https://bitbucket.org/anthony_tuininga/cx_oracle/issues/23

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

12.2.2 Version 5.2.1 (January 2016)

1. Added support for Python 3.5.

2. Removed password attribute from connection and session pool objects in order to promote best security practices
(if stored in RAM in cleartext it can be read in process dumps, for example). For those who would like to retain
this feature, a subclass of Connection could be used to store the password.

3. Added optional parameter externalauth to SessionPool() which enables wallet based or other external authenti-
cation mechanisms to be used.

4. Use the national character set encoding when required (when char set form is SQLCS_NCHAR); otherwise, the
wrong encoding would be used if the environment variable NLS_NCHAR is set.

5. Added support for binding boolean values to PL/SQL blocks and stored procedures (available in Oracle 12.1).

12.2.3 Version 5.2 (June 2015)

1. Added support for strings up to 32k characters (new in Oracle 12c).

2. Added support for getting array DML row counts (new in Oracle 12c).

3. Added support for fetching batch errors.

4. Added support for LOB values larger than 4 GB.

5. Added support for connections as SYSASM.

6. Added support for building without any configuration changes to the machine when using instant client RPMs
on Linux.

7. Added types NCHAR, FIXED_NCHAR and LONG_NCHAR to replace the types UNICODE,
FIXED_UNICODE and LONG_UNICODE (which are now deprecated). These types are available in
Python 3 as well so they can be used to specify the use of NCHAR type fields when binding or using
setinputsizes().

8. Fixed binding of booleans in Python 3.x.

9. Test suite now sets NLS_LANG if not already set.

10. Enhanced documentation for connection.action attribute and added note on cursor.parse() method to make clear
that DDL statements are executed when parsed.

11. Removed remaining remnants of support Oracle 9i.

12. Added __version__ attribute to conform with PEP 396.

13. Ensure that sessions are released to the pool when calling connection.close() (Issue #2)

14. Fixed handling of datetime intervals (Issue #7)

12.2.4 Version 5.1.3 (May 2014)

1. Added support for Oracle 12c.

2. Added support for Python 3.4.

3. Added support for query result set change notification. Thanks to Glen Walker for the patch.

4. Ensure that in Python 3.x that NCHAR and NVARCHAR2 and NCLOB columns are retrieved properly without
conversion issues. Thanks to Joakim Andersson for pointing out the issue and the possible solution.

12.2. 5.x releases 77

https://bitbucket.org/anthony_tuininga/cx_oracle/issue/2
https://bitbucket.org/anthony_tuininga/cx_oracle/issue/7

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

5. Fix bug when an exception is caught and then another exception is raised while handling that exception in
Python 3.x. Thanks to Boris Dzuba for pointing out the issue and providing a test case.

6. Enhance performance returning integers between 10 and 18 digits on 64-bit platforms that support it. Thanks
for Shai Berger for the initial patch.

7. Fixed two memory leaks.

8. Fix to stop current_schema from throwing a MemoryError on 64-bit platforms on occasion. Thanks to Andrew
Horton for the fix.

9. Class name of cursors changed to real name cx_Oracle.Cursor.

12.2.5 Version 5.1.2 (July 2012)

1. Added support for LONG_UNICODE which is a type used to handle long unicode strings. These are not
explicitly supported in Oracle but can be used to bind to NCLOB, for example, without getting the error “unim-
plemented or unreasonable conversion requested”.

2. Set the row number in a cursor when executing PL/SQL blocks as requested by Robert Ritchie.

3. Added support for setting the module, action and client_info attributes during connection so that logon triggers
will see the supplied values, as requested by Rodney Barnett.

12.2.6 Version 5.1.1 (October 2011)

1. Simplify management of threads for callbacks performed by database change notification and eliminate a crash
that occurred under high load in certain situations. Thanks to Calvin S. for noting the issue and suggesting a
solution and testing the patch.

2. Force server detach on close so that the connection is completely closed and not just the session as before.

3. Force use of OCI_UTF16ID for NCLOBs as using the default character set would result in ORA-03127 with
Oracle 11.2.0.2 and UTF8 character set.

4. Avoid attempting to clear temporary LOBs a second time when destroying the variable as in certain situations
this results in spurious errors.

5. Added additional parameter service_name to makedsn() which can be used to use the service_name rather than
the SID in the DSN string that is generated.

6. Fix cursor description in test suite to take into account the number of bytes per character.

7. Added tests for NCLOBS to the test suite.

8. Removed redundant code in setup.py for calculating the library path.

12.2.7 Version 5.1 (March 2011)

1. Remove support for UNICODE mode and permit Unicode to be passed through in everywhere a string may
be passed in. This means that strings will be passed through to Oracle using the value of the NLS_LANG
environment variable in Python 3.x as well. Doing this eliminated a bunch of problems that were discovered by
using UNICODE mode and also removed an unnecessary restriction in Python 2.x that Unicode could not be
used in connect strings or SQL statements, for example.

2. Added support for creating an empty object variable via a named type, the first step to adding full object support.

3. Added support for Python 3.2.

78 Chapter 12. cx_Oracle Release Notes

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

4. Account for lib64 used on x86_64 systems. Thanks to Alex Wood for supplying the patch.

5. Clear up potential problems when calling cursor.close() ahead of the cursor being freed by going out of scope.

6. Avoid compilation difficulties on AIX5 as OCIPing does not appear to be available on that platform under Oracle
10g Release 2. Thanks to Pierre-Yves Fontaniere for the patch.

7. Free temporary LOBs prior to each fetch in order to avoid leaking them. Thanks to Uwe Hoffmann for the initial
patch.

12.2.8 Version 5.0.4 (July 2010)

1. Added support for Python 2.7.

2. Added support for new parameter (port) for subscription() call which allows the client to specify the listening
port for callback notifications from the database server. Thanks to Geoffrey Weber for the initial patch.

3. Fixed compilation under Oracle 9i.

4. Fixed a few error messages.

12.2.9 Version 5.0.3 (February 2010)

1. Added support for 64-bit Windows.

2. Added support for Python 3.1 and dropped support for Python 3.0.

3. Added support for keyword parameters in cursor.callproc() and cursor.callfunc().

4. Added documentation for the UNICODE and FIXED_UNICODE variable types.

5. Added extra link arguments required for Mac OS X as suggested by Jason Woodward.

6. Added additional error codes to the list of error codes that raise OperationalError rather than DatabaseError.

7. Fixed calculation of display size for strings with national database character sets that are not the default
AL16UTF16.

8. Moved the resetting of the setinputsizes flag before the binding takes place so that if an error takes place and a
new statement is prepared subsequently, spurious errors will not occur.

9. Fixed compilation with Oracle 10g Release 1.

10. Tweaked documentation based on feedback from a number of people.

11. Added support for running the test suite using “python setup.py test”

12. Added support for setting the CLIENT_IDENTIFIER value in the v$session table for connections.

13. Added exception when attempting to call executemany() with arrays which is not supported by the OCI.

14. Fixed bug when converting from decimal would result in OCI-22062 because the locale decimal point was not
a period. Thanks to Amaury Forgeot d’Arc for the solution to this problem.

12.2.10 Version 5.0.2 (May 2009)

1. Fix creation of temporary NCLOB values and the writing of NCLOB values in non Unicode mode.

2. Re-enabled parsing of non select statements as requested by Roy Terrill.

3. Implemented a parse error offset as requested by Catherine Devlin.

12.2. 5.x releases 79

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

4. Removed lib subdirectory when forcing RPATH now that the library directory is being calculated exactly in
setup.py.

5. Added an additional cast in order to support compiling by Microsoft Visual C++ 2008 as requested by Marco
de Paoli.

6. Added additional include directory to setup.py in order to support compiling by Microsoft Visual Studio was
requested by Jason Coombs.

7. Fixed a few documentation issues.

12.2.11 Version 5.0.1 (February 2009)

1. Added support for database change notification available in Oracle 10g Release 2 and higher.

2. Fix bug where NCLOB data would be corrupted upon retrieval (non Unicode mode) or would generate exception
ORA-24806 (LOB form mismatch). Oracle insists upon differentiating between CLOB and NCLOB no matter
which character set is being used for retrieval.

3. Add new attributes size, bufferSize and numElements to variable objects, deprecating allocelems (replaced by
numElements) and maxlength (replaced by bufferSize)

4. Avoid increasing memory allocation for strings when using variable width character sets and increasing the
number of elements in a variable during executemany().

5. Tweaked code in order to ensure that cx_Oracle can compile with Python 3.0.1.

12.2.12 Version 5.0 (December 2008)

1. Added support for Python 3.0 with much help from Amaury Forgeot d’Arc.

2. Removed support for Python 2.3 and Oracle 8i.

3. Added support for full unicode mode in Python 2.x where all strings are passed in and returned as unicode
(module must be built in this mode) rather than encoded strings

4. nchar and nvarchar columns now return unicode instead of encoded strings

5. Added support for an output type handler and/or an input type handler to be specified at the connection and
cursor levels.

6. Added support for specifying both input and output converters for variables

7. Added support for specifying the array size of variables that are created using the cursor.var() method

8. Added support for events mode and database resident connection pooling (DRCP) in Oracle 11g.

9. Added support for changing the password during construction of a new connection object as well as after the
connection object has been created

10. Added support for the interval day to second data type in Oracle, represented as datetime.timedelta objects in
Python.

11. Added support for getting and setting the current_schema attribute for a session

12. Added support for proxy authentication in session pools as requested by Michael Wegrzynek (and thanks for the
initial patch as well).

13. Modified connection.prepare() to return a boolean indicating if a transaction was actually prepared in order to
avoid the error ORA-24756 (transaction does not exist).

14. Raise a cx_Oracle.Error instance rather than a string for column truncation errors as requested by Helge Tesdal.

80 Chapter 12. cx_Oracle Release Notes

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

15. Fixed handling of environment handles in session pools in order to allow session pools to fetch objects without
exceptions taking place.

12.3 Older releases

12.3.1 Version 4.4.1 (October 2008)

1. Make the bind variables and fetch variables accessible although they need to be treated carefully since they are
used internally; support added for forward compatibility with version 5.x.

2. Include the “cannot insert null value” in the list of errors that are treated as integrity errors as requested by Matt
Boersma.

3. Use a cx_Oracle.Error instance rather than a string to hold the error when truncation (ORA-1406) takes place as
requested by Helge Tesdal.

4. Added support for fixed char, old style varchar and timestamp attribute values in objects.

5. Tweaked setup.py to check for the Oracle version up front rather than during the build in order to produce more
meaningful errors and simplify the code.

6. In setup.py added proper detection for the instant client on Mac OS X as recommended by Martijn Pieters.

7. In setup.py, avoided resetting the extraLinkArgs on Mac OS X as doing so prevents simple modification where
desired as expressed by Christian Zagrodnick.

8. Added documentation on exception handling as requested by Andreas Mock, who also graciously provided an
initial patch.

9. Modified documentation indicating that the password attribute on connection objects can be written.

10. Added documentation warning that parameters not passed in during subsequent executions of a statement will
retain their original values as requested by Harald Armin Massa.

11. Added comments indicating that an Oracle client is required since so many people find this surprising.

12. Removed all references to Oracle 8i from the documentation and version 5.x will eliminate all vestiges of support
for this version of the Oracle client.

13. Added additional link arguments for Cygwin as requested by Rob Gillen.

12.3.2 Version 4.4 (June 2008)

1. Fix setup.py to handle the Oracle instant client and Oracle XE on both Linux and Windows as pointed out by
many. Thanks also to the many people who also provided patches.

2. Set the default array size to 50 instead of 1 as the DB API suggests because the performance difference is so
drastic and many people have recommended that the default be changed.

3. Added Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS around each blocking call for
LOBs as requested by Jason Conroy who also provided an initial patch and performed a number of tests that
demonstrate the new code is much more responsive.

4. Add support for acquiring cursor.description after a parse.

5. Defer type assignment when performing executemany() until the last possible moment if the value being bound
in is null as suggested by Dragos Dociu.

12.3. Older releases 81

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

6. When dropping a connection from the pool, ignore any errors that occur during the rollback; unfortunately,
Oracle decides to commit data even when dropping a connection from the pool instead of rolling it back so the
attempt still has to be made.

7. Added support for setting CLIENT_DRIVER in V$SESSION_CONNECT_INFO in Oracle 11g and higher.

8. Use cx_Oracle.InterfaceError rather than the builtin RuntimeError when unable to create the Oracle environment
object as requested by Luke Mewburn since the error is specific to Oracle and someone attempting to catch any
exception cannot simply use cx_Oracle.Error.

9. Translated some error codes to OperationalError as requested by Matthew Harriger; translated if/elseif/else logic
to switch statement to make it more readable and to allow for additional translation if desired.

10. Transformed documentation to new format using restructured text. Thanks to Waldemar Osuch for contributing
the initial draft of the new documentation.

11. Allow the password to be overwritten by a new value as requested by Alex VanderWoude; this value is retained
as a convenience to the user and not used by anything in the module; if changed externally it may be convenient
to keep this copy up to date.

12. Cygwin is on Windows so should be treated in the same way as noted by Matthew Cahn.

13. Add support for using setuptools if so desired as requested by Shreya Bhatt.

14. Specify that the version of Oracle 10 that is now primarily used is 10.2, not 10.1.

12.3.3 Version 4.3.3 (October 2007)

1. Added method ping() on connections which can be used to test whether or not a connection is still active
(available in Oracle 10g R2).

2. Added method cx_Oracle.clientversion() which returns a 5-tuple giving the version of the client that is in use
(available in Oracle 10g R2).

3. Added methods startup() and shutdown() on connections which can be used to startup and shutdown databases
(available in Oracle 10g R2).

4. Added support for Oracle 11g.

5. Added samples directory which contains a handful of scripts containing sample code for more advanced tech-
niques. More will follow in future releases.

6. Prevent error “ORA-24333: zero iteration count” when calling executemany() with zero rows as requested by
Andreas Mock.

7. Added methods __enter__() and __exit__() on connections to support using connections as context managers in
Python 2.5 and higher. The context managed is the transaction state. Upon exit the transaction is either rolled
back or committed depending on whether an exception took place or not.

8. Make the search for the lib32 and lib64 directories automatic for all platforms.

9. Tweak the setup configuration script to include all of the metadata and allow for building the module within
another setup configuration script

10. Include the Oracle version in addition to the Python version in the build directories that are created and in the
names of the binary packages that are created.

11. Remove unnecessary dependency on win32api to build module on Windows.

82 Chapter 12. cx_Oracle Release Notes

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

12.3.4 Version 4.3.2 (August 2007)

1. Added methods open(), close(), isopen() and getchunksize() in order to improve performance of reading/writing
LOB values in chunks.

2. Fixed support for native doubles and floats in Oracle 10g; added new type NATIVE_FLOAT to allow specifica-
tion of a variable of that specific type where desired. Thanks to D.R. Boxhoorn for pointing out the fact that this
was not working properly when the arraysize was anything other than 1.

3. When calling connection.begin(), only create a new tranasction handle if one is not already associated with the
connection. Thanks to Andreas Mock for discovering this and for Amaury Forgeot d’Arc for diagnosing the
problem and pointing the way to a solution.

4. Added attribute cursor.rowfactory which allows a method to be called for each row that is returned; this is about
20% faster than calling the method in Python using the idiom [method(*r) for r in cursor].

5. Attempt to locate an Oracle installation by looking at the PATH if the environment variable ORACLE_HOME
is not set; this is of primary use on Windows where this variable should not normally be set.

6. Added support for autocommit mode as requested by Ian Kelly.

7. Added support for connection.stmtcachesize which allows for both reading and writing the size of the statement
cache size. This parameter can make a huge difference with the length of time taken to prepare statements.
Added support for setting the statement tag when preparing a statement. Both of these were requested by Bjorn
Sandberg who also provided an initial patch.

8. When copying the value of a variable, copy the return code as well.

12.3.5 Version 4.3.1 (April 2007)

1. Ensure that if the client buffer size exceeds 4000 bytes that the server buffer size does not as strings may only
contain 4000 bytes; this allows handling of multibyte character sets on the server as well as the client.

2. Added support for using buffer objects to populate binary data and made the Binary() constructor the buffer type
as requested by Ken Mason.

3. Fix potential crash when using full optimization with some compilers. Thanks to Aris Motas for noticing this
and providing the initial patch and to Amaury Forgeot d’Arc for providing an even simpler solution.

4. Pass the correct charset form in to the write call in order to support writing to national character set LOB values
properly. Thanks to Ian Kelly for noticing this discrepancy.

12.3.6 Version 4.3 (March 2007)

1. Added preliminary support for fetching Oracle objects (SQL types) as requested by Kristof Beyls (who kindly
provided an initial patch). Additional work needs to be done to support binding and updating objects but the
basic structure is now in place.

2. Added connection.maxBytesPerCharacter which indicates the maximum number of bytes each character can
use; use this value to also determine the size of local buffers in order to handle discrepancies between the client
character set and the server character set. Thanks to Andreas Mock for providing the initial patch and working
with me to resolve this issue.

3. Added support for querying native floats in Oracle 10g as requested by Danny Boxhoorn.

4. Add support for temporary LOB variables created via PL/SQL instead of only directly by cx_Oracle; thanks to
Henning von Bargen for discovering this problem.

12.3. Older releases 83

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

5. Added support for specifying variable types using the builtin types int, float, str and datetime.date which allows
for finer control of what type of Python object is returned from cursor.callfunc() for example.

6. Added support for passing booleans to callproc() and callfunc() as requested by Anana Aiyer.

7. Fixed support for 64-bit environments in Python 2.5.

8. Thanks to Filip Ballegeer and a number of his co-workers, an intermittent crash was tracked down; specifically,
if a connection is closed, then the call to OCIStmtRelease() will free memory twice. Preventing the call when
the connection is closed solves the problem.

12.3.7 Version 4.2.1 (September 2006)

1. Added additional type (NCLOB) to handle CLOBs that use the national character set as requested by Chris
Dunscombe.

2. Added support for returning cursors from functions as requested by Daniel Steinmann.

3. Added support for getting/setting the “get” mode on session pools as requested by Anand Aiyer.

4. Added support for binding subclassed cursors.

5. Fixed binding of decimal objects with absolute values less than 0.1.

12.3.8 Version 4.2 (July 2006)

1. Added support for parsing an Oracle statement as requested by Patrick Blackwill.

2. Added support for BFILEs at the request of Matthew Cahn.

3. Added support for binding decimal.Decimal objects to cursors.

4. Added support for reading from NCLOBs as requested by Chris Dunscombe.

5. Added connection attributes encoding and nencoding which return the IANA character set name for the character
set and national character set in use by the client.

6. Rework module initialization to use the techniques recommended by the Python documentation as one user was
experiencing random segfaults due to the use of the module dictionary after the initialization was complete.

7. Removed support for the OPT_Threading attribute. Use the threaded keyword when creating connections and
session pools instead.

8. Removed support for the OPT_NumbersAsStrings attribute. Use the numbersAsStrings attribute on cursors
instead.

9. Use type long rather than type int in order to support long integers on 64-bit machines as reported by Uwe
Hoffmann.

10. Add cursor attribute “bindarraysize” which is defaulted to 1 and is used to determine the size of the arrays
created for bind variables.

11. Added repr() methods to provide something a little more useful than the standard type name and memory
address.

12. Added keyword parameter support to the functions that imply such in the documentation as requested by Harald
Armin Massa.

13. Treat an empty dictionary passed through to cursor.execute() as keyword parameters the same as if no keyword
parameters were specified at all, as requested by Fabien Grumelard.

14. Fixed memory leak when a LOB read would fail.

84 Chapter 12. cx_Oracle Release Notes

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

15. Set the LDFLAGS value in the environment rather than directly in the setup.py file in order to satisfy those who
wish to enable the use of debugging symbols.

16. Use __DATE__ and __TIME__ to determine the date and time of the build rather than passing it through directly.

17. Use Oracle types and add casts to reduce warnings as requested by Amaury Forgeot d’Arc.

18. Fixed typo in error message.

12.3.9 Version 4.1.2 (December 2005)

1. Restore support of Oracle 9i features when using the Oracle 10g client.

12.3.10 Version 4.1.1 (December 2005)

1. Add support for dropping a connection from a session pool.

2. Add support for write only attributes “module”, “action” and “clientinfo” which work only in Oracle 10g as
requested by Egor Starostin.

3. Add support for pickling database errors.

4. Use the previously created bind variable as a template if available when creating a new variable of a larger size.
Thanks to Ted Skolnick for the initial patch.

5. Fixed tests to work properly in the Python 2.4 environment where dates and timestamps are different Python
types. Thanks to Henning von Bargen for pointing this out.

6. Added additional directories to search for include files and libraries in order to better support the Oracle 10g
instant client.

7. Set the internal fetch number to 0 in order to satisfy very picky source analysis tools as requested by Amaury
Fogeot d’Arc.

8. Improve the documentation for building and installing the module from source as some people are unaware of
the standard methods for building Python modules using distutils.

9. Added note in the documentation indicating that the arraysize attribute can drastically affect performance of
queries since this seems to be a common misunderstanding of first time users of cx_Oracle.

10. Add a comment indicating that on HP-UX Itanium with Oracle 10g the library ttsh10 must alos be linked against.
Thanks to Bernard Delmee for the information.

12.3.11 Version 4.1 (January 2005)

1. Fixed bug where subclasses of Cursor do not pass the connection in the constructor causing a segfault.

2. DDL statements must be reparsed before execution as noted by Mihai Ibanescu.

3. Add support for setting input sizes by position.

4. Fixed problem with catching an exception during execute and then still attempting to perform a fetch afterwards
as noted by Leith Parkin.

5. Rename the types so that they can be pickled and unpickled. Thanks to Harri Pasanen for pointing out the
problem.

6. Handle invalid NLS_LANG setting properly (Oracle seems to like to provide a handle back even though it is
invalid) and determine the number of bytes per character in order to allow for proper support in the future of
multibyte and variable width character sets.

12.3. Older releases 85

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

7. Remove date checking from the native case since Python already checks that dates are valid; enhance error
message when invalid dates are encountered so that additional processing can be done.

8. Fix bug executing SQL using numeric parameter names with predefined variables (such as what takes place
when calling stored procedures with out parameters).

9. Add support for reading CLOB values using multibyte or variable length character sets.

12.3.12 Version 4.1 beta 1 (September 2004)

1. Added support for Python 2.4. In Python 2.4, the datetime module is used for both binding and fetching of date
and timestamp data. In Python 2.3, objects from the datetime module can be bound but the internal datetime
objects will be returned from queries.

2. Added pickling support for LOB and datetime data.

3. Fully qualified the table name that was missing in an alter table statement in the setup test script as noted by
Marc Gehling.

4. Added a section allowing for the setting of the RPATH linker directive in setup.py as requested by Iustin Pop.

5. Added code to raise a programming error exception when an attempt is made to access a LOB locator variable
in a subsequent fetch.

6. The username, password and dsn (tnsentry) are stored on the connection object when specified, regardless of
whether or not a standard connection takes place.

7. Added additional module level constant called “LOB” as requested by Joseph Canedo.

8. Changed exception type to IntegrityError for constraint violations as requested by Joseph Canedo.

9. If scale and precision are not specified, an attempt is made to return a long integer as requested by Joseph
Canedo.

10. Added workaround for Oracle bug which returns an invalid handle when the prepare call fails. Thanks to
alantam@hsbc.com for providing the code that demonstrated the problem.

11. The cursor method arrayvar() will now accept the actual list so that it is not necessary to call cursor.arrayvar()
followed immediately by var.setvalue().

12. Fixed bug where attempts to execute the statement “None” with bind variables would cause a segmentation fault.

13. Added support for binding by position (paramstyle = “numeric”).

14. Removed memory leak created by calls to OCIParamGet() which were not mirrored by calls to OCIDescriptor-
Free(). Thanks to Mihai Ibanescu for pointing this out and providing a patch.

15. Added support for calling cursor.executemany() with statement None implying that the previously prepared
statement ought to be executed. Thanks to Mihai Ibanescu for providing a patch.

16. Added support for rebinding variables when a subsequent call to cursor.executemany() uses a different number
of rows. Thanks to Mihai Ibanescu for supplying a patch.

17. The microseconds are now displayed in datetime variables when nonzero similar to method used in the datetime
module.

18. Added support for binary_float and binary_double columns in Oracle 10g.

12.3.13 Version 4.0.1 (February 2004)

1. Fixed bugs on 64-bit platforms that caused segmentation faults and bus errors in session pooling and determining
the bind variables associated with a statement.

86 Chapter 12. cx_Oracle Release Notes

mailto:alantam@hsbc.com

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

2. Modified test suite so that 64-bit platforms are tested properly.

3. Added missing commit statements in the test setup scripts. Thanks to Keith Lyon for pointing this out.

4. Fix setup.py for Cygwin environments. Thanks to Doug Henderson for providing the necessary fix.

5. Added support for compiling cx_Oracle without thread support. Thanks to Andre Reitz for pointing this out.

6. Added support for a new keyword parameter called threaded on connections and session pools. This parameter
defaults to False and indicates whether threaded mode ought to be used. It replaces the module level attribute
OPT_Threading although examining the attribute will be retained until the next release at least.

7. Added support for a new keyword parameter called twophase on connections. This parameter defaults to False
and indicates whether support for two phase (distributed or global) transactions ought to be present. Note that
support for distributed transactions is buggy when crossing major version boundaries (Oracle 8i to Oracle 9i for
example).

8. Ensure that the rowcount attribute is set properly when an exception is raised during execution. Thanks to Gary
Aviv for pointing out this problem and its solution.

12.3.14 Version 4.0 (December 2003)

1. Added support for subclassing connections, cursors and session pools. The changes involved made it necessary
to drop support for Python 2.1 and earlier although a branch exists in CVS to allow for support of Python 2.1
and earlier if needed.

2. Connections and session pools can now be created with keyword parameters, not just sequential parameters.

3. Queries now return integers whenever possible and long integers if the number will overflow a simple integer.
Floats are only returned when it is known that the number is a floating point number or the integer conversion
fails.

4. Added initial support for user callbacks on OCI functions. See the documentation for more details.

5. Add support for retrieving the bind variable names associated with a cursor with a new method bindnames().

6. Add support for temporary LOB variables. This means that setinputsizes() can be used with the values
CLOB and BLOB to create these temporary LOB variables and allow for the equivalent of empty_clob() and
empty_blob() since otherwise Oracle will treat empty strings as NULL values.

7. Automatically switch to long strings when the data size exceeds the maximum string size that Oracle allows
(4000 characters) and raise an error if an attempt is made to set a string variable to a size that it does not support.
This avoids truncation errors as reported by Jon Franz.

8. Add support for global (distributed) transactions and two phase commit.

9. Force the NLS settings for the session so that test tables are populated correctly in all circumstances; problems
were noted by Ralf Braun and Allan Poulsen.

10. Display error messages using the environment handle when the error handle has not yet been created; this
provides better error messages during this rather rare situation.

11. Removed memory leak in callproc() that was reported by Todd Whiteman.

12. Make consistent the calls to manipulate memory; otherwise segfaults can occur when the pymalloc option is
used, as reported by Matt Hoskins.

13. Force a rollback when a session is released back to the session pool. Apparently the connections are not as
stateless as Oracle’s documentation suggests and this makes the logic consistent with normal connections.

14. Removed module method attach(). This can be replaced with a call to Connection(handle=) if needed.

12.3. Older releases 87

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

12.3.15 Version 3.1 (August 2003)

1. Added support for connecting with SYSDBA and SYSOPER access which is needed for connecting as sys in
Oracle 9i.

2. Only check the dictionary size if the variable is not NULL; otherwise, an error takes place which is not caught
or cleared; this eliminates a spurious “Objects/dictobject.c:1258: bad argument to internal function” in Python
2.3.

3. Add support for session pooling. This is only support for Oracle 9i but is amazingly fast – about 100 times faster
than connecting.

4. Add support for statement caching when pooling sessions, this reduces the parse time considerably. Unfortu-
nately, the Oracle OCI does not allow this to be easily turned on for normal sessions.

5. Add method trim() on CLOB and BLOB variables for trimming the size.

6. Add support for externally identified users; to use this feature leave the username and password fields empty
when connecting.

7. Add method cancel() on connection objects to cancel long running queries. Note that this only works on non-
Windows platforms.

8. Add method callfunc() on cursor objects to allow calling a function without using an anonymous PL/SQL block.

9. Added documentation on objects that were not documented. At this point all objects, methods and constants in
cx_Oracle have been documented.

10. Added support for timestamp columns in Oracle 9i.

11. Added module level method makedsn() which creates a data source name given the host, port and SID.

12. Added constant “buildtime” which is the time when the module was built as an additional means of identifying
the build that is in use.

13. Binding a value that is incompatible to the previous value that was bound (data types do not match or array size
is larger) will now result in a new bind taking place. This is more consistent with the DB API although it does
imply a performance penalty when used.

12.3.16 Version 3.0a (June 2003)

1. Fixed bug where zero length PL/SQL arrays were being mishandled

2. Fixed support for the data type “float” in Oracle; added one to the display size to allow for the sign of the
number, if necessary; changed the display size of unconstrained numbers to 127, which is the largest number
that Oracle can handle

3. Added support for retrieving the description of a bound cursor before fetching it

4. Fixed a couple of build issues on Mac OS X, AIX and Solaris (64-bit)

5. Modified documentation slightly based on comments from several people

6. Included files in MANIFEST that are needed to generate the binaries

7. Modified test suite to work within the test environment at Computronix as well as within the packages that are
distributed

88 Chapter 12. cx_Oracle Release Notes

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

12.3.17 Version 3.0 (March 2003)

1. Removed support for connection to Oracle7 databases; it is entirely possible that it will still work but I no longer
have any way of testing and Oracle has dropped any meaningful support for Oracle7 anyway

2. Fetching of strings is now done with predefined memory areas rather than dynamic memory areas; dynamic
fetching of strings was causing problems with Oracle 9i in some instances and databases using a different
character set other than US ASCII

3. Fixed bug where segfault would occur if the ‘/’ character preceded the ‘@’ character in a connect string

4. Added two new cursor methods var() and arrayvar() in order to eliminate the need for setinputsizes() when
defining PL/SQL arrays and as a generic method of acquiring bind variables directly when needed

5. Fixed support for binding cursors and added support for fetching cursors (these are known as ref cursors in
PL/SQL).

6. Eliminated discrepancy between the array size used internally and the array size specified by the interface user;
this was done earlier to avoid bus errors on 64-bit platforms but another way has been found to get around that
issue and a number of people were getting confused because of the discrepancy

7. Added support for the attribute “connection” on cursors, an optional DB API extension

8. Added support for passing a dictionary as the second parameter for the cursor.execute() method in order to
comply with the DB API more closely; the method of passing parameters with keyword parameters is still
supported and is in fact preferred

9. Added support for the attribute “statement” on cursors which is a reference to the last SQL statement prepared
or executed

10. Added support for passing any sequence to callproc() rather than just lists as before

11. Fixed bug where segfault would occur if the array size was changed after the cursor was executed but before it
was fetched

12. Ignore array size when performing executemany() and use the length of the list of parameters instead

13. Rollback when connection is closed or destroyed to follow DB API rather than use the Oracle default (which is
commit)

14. Added check for array size too large causing an integer overflow

15. Added support for iterators for Python 2.2 and above

16. Added test suite based on PyUnitTest

17. Added documentation in HTML format similar to the documentation for the core Python library

12.3.18 Version 2.5a (August 2002)

1. Fix problem with Oracle 9i and retrieving strings; it seems that Oracle 9i uses the correct method for dynamic
callback but Oracle 8i will not work with that method so an #ifdef was added to check for the existence of an
Oracle 9i feature; thanks to Paul Denize for discovering this problem

12.3.19 Version 2.5 (July 2002)

1. Added flag OPT_NoOracle7 which, if set, assumes that connections are being made to Oracle8 or higher
databases; this allows for eliminating the overhead in performing this check at connect time

2. Added flag OPT_NumbersAsStrings which, if set, returns all numbers as strings rather than integers or floats;
this flag is used when defined variables are created (during select statements only)

12.3. Older releases 89

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

3. Added flag OPT_Threading which, if set, uses OCI threading mode; there is a significant performance degrada-
tion in this mode (about 15-20%) but it does allow threads to share connections (threadsafety level 2 according
to the Python Database API 2.0); note that in order to support this, Oracle 8i or higher is now required

4. Added Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS pairs where applicable to sup-
port threading during blocking OCI calls

5. Added global method attach() to cx_Oracle to support attaching to an existing database handle (as provided by
PowerBuilder, for example)

6. Eliminated the cursor method fetchbinds() which was used for returning the list of bind variables after execution
to get the values of out variables; the cursor method setinputsizes() was modified to return the list of bind
variables and the cursor method execute() was modified to return the list of defined variables in the case of a
select statement being executed; these variables have three methods available to them: getvalue([<pos>]) to get
the value of a variable, setvalue(<pos>, <value>) to set its value and copy(<var>, <src_pos>, <targ_pos>) to
copy the value from a variable in a more efficient manner than setvalue(getvalue())

7. Implemented cursor method executemany() which expects a list of dictionaries for the parameters

8. Implemented cursor method callproc()

9. Added cursor method prepare() which parses (prepares) the statement for execution; subsequent execute() or
executemany() calls can pass None as the statement which will imply use of the previously prepared statement;
used for high performance only

10. Added cursor method fetchraw() which will perform a raw fetch of the cursor returning the number of rows thus
fetched; this is used to avoid the overhead of generating result sets; used for high performance only

11. Added cursor method executemanyprepared() which is identical to the method executemany() except that it
takes a single parameter which is the number of times to execute a previously prepared statement and it assumes
that the bind variables already have their values set; used for high performance only

12. Added support for rowid being returned in a select statement

13. Added support for comparing dates returned by cx_Oracle

14. Integrated patch from Andre Reitz to set the null ok flag in the description attribute of the cursor

15. Integrated patch from Andre Reitz to setup.py to support compilation with Python 1.5

16. Integrated patch from Benjamin Kearns to setup.py to support compilation on Cygwin

12.3.20 Version 2.4 (January 2002)

1. String variables can now be made any length (previously restricted to the 64K limit imposed by Oracle for
default binding); use the type cx_Oracle.LONG_STRING as the parameter to setinputsizes() for binding in
string values larger than 4000 bytes.

2. Raw and long raw columns are now supported; use the types cx_Oracle.BINARY and
cx_Oracle.LONG_BINARY as the parameter to setinputsizes() for binding in values of these types.

3. Functions DateFromTicks(), TimeFromTicks() and TimestampFromTicks() are now implemented.

4. Function cursor.setoutputsize() implemented

5. Added the ability to bind arrays as out parameters to procedures; use the format [cx_Oracle.<DataType>, <Nu-
mElems>] as the input to the function setinputsizes() for binding arrays

6. Discovered from the Oracle 8.1.6 version of the documentation of the OCI libraries, that the size of the memory
location required for the precision variable is larger than the printed documentation says; this was causing a
problem with the code on the Sun platform.

7. Now support building RPMs for Linux.

90 Chapter 12. cx_Oracle Release Notes

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

12.3.21 Version 2.3 (October 2001)

1. Incremental performance enhancements (dealing with reusing cursors and bind handles)

2. Ensured that arrays of integers with a single float in them are all treated as floats, as suggested by Martin Koch.

3. Fixed code dealing with scale and precision for both defining a numeric variable and for providing the cursor
description; this eliminates the problem of an underflow error (OCI-22054) when retrieving data with non-zero
scale.

12.3.22 Version 2.2 (July 2001)

1. Upgraded thread safety to level 1 (according to the Python DB API 2.0) as an internal project required the ability
to share the module between threads.

2. Added ability to bind ref cursors to PL/SQL blocks as requested by Brad Powell.

3. Added function write(Value, [Offset]) to LOB variables as requested by Matthias Kirst.

4. Procedure execute() on Cursor objects now permits a value None for the statement which means that the pre-
viously prepared statement will be executed and any input sizes set earlier will be retained. This was done to
improve the performance of scripts that execute one statement many times.

5. Modified module global constants BINARY and DATETIME to point to the external representations of those
types so that the expression type(var) == cx_Oracle.DATETIME will work as expected.

6. Added global constant version to provide means of determining the current version of the module.

7. Modified error checking routine to distinguish between an Oracle error and invalid handles.

8. Added error checking to avoid setting the value of a bind variable to a value that it cannot support and raised an
exception to indicate this fact.

9. Added extra compile arguments for the AIX platform as suggested by Jehwan Ryu.

10. Added section to the README to indicate the method for a binary installation as suggested by Steve Holden.

11. Added simple usage example as requested by many people.

12. Added HISTORY file to the distribution.

12.3. Older releases 91

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

92 Chapter 12. cx_Oracle Release Notes

CHAPTER 13

License

LICENSE AGREEMENT FOR CX_ORACLE

Copyright © 2016-2018, Oracle and/or its affiliates. All rights reserved.

Copyright © 2007-2015, Anthony Tuininga. All rights reserved.

Copyright © 2001-2007, Computronix (Canada) Ltd., Edmonton, Alberta, Canada. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the disclaimer
that follows.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the names of the copyright holders nor the names of any contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Computronix ® is a registered trademark of Computronix (Canada) Ltd.

93

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

94 Chapter 13. License

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

95

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

96 Chapter 14. Indices and tables

Python Module Index

c
cx_Oracle, 12

97

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

98 Python Module Index

Index

Symbols
__enter__() (Connection method), 29
__enter__() (Cursor method), 37
__exit__() (Connection method), 29
__exit__() (Cursor method), 37
__future__ (in module cx_Oracle), 13
__iter__() (Cursor method), 41
__version__ (in module cx_Oracle), 17

A
acquire() (SessionPool method), 47
action (Connection attribute), 29
actualElements (Variable attribute), 45
apilevel (in module cx_Oracle), 16
append() (Object method), 57
arraysize (Cursor attribute), 37
arrayvar() (Cursor method), 37
aslist() (Object method), 58
attempts (MessageProperties attribute), 60
ATTR_PURITY_DEFAULT (in module cx_Oracle), 21
ATTR_PURITY_NEW (in module cx_Oracle), 22
ATTR_PURITY_SELF (in module cx_Oracle), 22
attributes (ObjectType attribute), 57
autocommit (Connection attribute), 29

B
begin() (Connection method), 29
BFILE (in module cx_Oracle), 23
BINARY (in module cx_Oracle), 23
Binary() (in module cx_Oracle), 13
bindarraysize (Cursor attribute), 37
bindnames() (Cursor method), 38
bindvars (Cursor attribute), 38
BLOB (in module cx_Oracle), 23
BOOLEAN (in module cx_Oracle), 23
bufferSize (Variable attribute), 45
buildtime (in module cx_Oracle), 16
busy (SessionPool attribute), 47

C
callback (Subscription attribute), 51
callfunc() (Cursor method), 38
callproc() (Cursor method), 38
cancel() (Connection method), 30
changepassword() (Connection method), 30
client_identifier (Connection attribute), 30
clientinfo (Connection attribute), 30
clientversion() (in module cx_Oracle), 13
CLOB (in module cx_Oracle), 24
close() (Connection method), 30
close() (Cursor method), 38
close() (LOB method), 55
code (cx_Oracle._Error attribute), 27
commit() (Connection method), 30
condition (DeqOptions attribute), 59
connect() (in module cx_Oracle), 13
connection (Cursor attribute), 38
connection (Subscription attribute), 51
Connection() (in module cx_Oracle), 13
consumername (DeqOptions attribute), 59
consumerName (Message attribute), 52
context (cx_Oracle._Error attribute), 27
copy() (Object method), 58
correlation (DeqOptions attribute), 59
correlation (MessageProperties attribute), 60
createlob() (Connection method), 30
current_schema (Connection attribute), 30
CURSOR (in module cx_Oracle), 24
cursor() (Connection method), 31
Cursor() (in module cx_Oracle), 15
Cursor.description (built-in variable), 38
cx_Oracle (module), 12

D
DatabaseError, 26
DataError, 26
Date() (in module cx_Oracle), 15
DateFromTicks() (in module cx_Oracle), 15

99

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

DATETIME (in module cx_Oracle), 24
dbname (Message attribute), 52
dbop (Connection attribute), 31
DBSHUTDOWN_ABORT (in module cx_Oracle), 20
DBSHUTDOWN_FINAL (in module cx_Oracle), 20
DBSHUTDOWN_IMMEDIATE (in module cx_Oracle),

20
DBSHUTDOWN_TRANSACTIONAL (in module

cx_Oracle), 20
DBSHUTDOWN_TRANSACTIONAL_LOCAL (in

module cx_Oracle), 20
delay (MessageProperties attribute), 60
delete() (Object method), 58
deliverymode (DeqOptions attribute), 59
deliverymode (EnqOptions attribute), 60
deliverymode (MessageProperties attribute), 60
deq() (Connection method), 31
DEQ_BROWSE (in module cx_Oracle), 17
DEQ_FIRST_MSG (in module cx_Oracle), 17
DEQ_IMMEDIATE (in module cx_Oracle), 18
DEQ_LOCKED (in module cx_Oracle), 17
DEQ_NEXT_MSG (in module cx_Oracle), 18
DEQ_NEXT_TRANSACTION (in module cx_Oracle),

18
DEQ_NO_WAIT (in module cx_Oracle), 18
DEQ_ON_COMMIT (in module cx_Oracle), 18
DEQ_REMOVE (in module cx_Oracle), 17
DEQ_REMOVE_NODATA (in module cx_Oracle), 17
DEQ_WAIT_FOREVER (in module cx_Oracle), 18
deqoptions() (Connection method), 31
drop() (SessionPool method), 47
dsn (Connection attribute), 31
dsn (SessionPool attribute), 47

E
edition (Connection attribute), 31
encoding (Connection attribute), 31
enq() (Connection method), 32
ENQ_IMMEDIATE (in module cx_Oracle), 18
ENQ_ON_COMMIT (in module cx_Oracle), 18
enqoptions() (Connection method), 32
enqtime (MessageProperties attribute), 61
Error, 26
EVENT_AQ (in module cx_Oracle), 20
EVENT_DEREG (in module cx_Oracle), 20
EVENT_NONE (in module cx_Oracle), 20
EVENT_OBJCHANGE (in module cx_Oracle), 20
EVENT_QUERYCHANGE (in module cx_Oracle), 20
EVENT_SHUTDOWN (in module cx_Oracle), 20
EVENT_SHUTDOWN_ANY (in module cx_Oracle), 20
EVENT_STARTUP (in module cx_Oracle), 20
exceptionq (MessageProperties attribute), 61
execute() (Cursor method), 39
executemany() (Cursor method), 39

executemanyprepared() (Cursor method), 39
exists() (Object method), 58
expiration (MessageProperties attribute), 61
extend() (Object method), 58
external_name (Connection attribute), 32

F
fetchall() (Cursor method), 40
fetchmany() (Cursor method), 40
fetchone() (Cursor method), 40
fetchraw() (Cursor method), 40
fetchvars (Cursor attribute), 40
fileexists() (LOB method), 55
first() (Object method), 58
FIXED_CHAR (in module cx_Oracle), 24
FIXED_NCHAR (in module cx_Oracle), 24

G
getarraydmlrowcounts() (Cursor method), 40
getbatcherrors() (Cursor method), 41
getchunksize() (LOB method), 55
getelement() (Object method), 58
getfilename() (LOB method), 55
getimplicitresults() (Cursor method), 41
gettype() (Connection method), 32
getvalue() (Variable method), 45

H
handle (Connection attribute), 32
homogeneous (SessionPool attribute), 47

I
id (MessageQuery attribute), 53
id (Subscription attribute), 51
inconverter (Variable attribute), 45
increment (SessionPool attribute), 48
inputtypehandler (Connection attribute), 32
inputtypehandler (Cursor attribute), 41
IntegrityError, 26
InterfaceError, 26
internal_name (Connection attribute), 32
InternalError, 26
INTERVAL (in module cx_Oracle), 24
ipAddress (Subscription attribute), 51
iscollection (ObjectType attribute), 57
isopen() (LOB method), 55
isrecoverable (cx_Oracle._Error attribute), 27

L
last() (Object method), 58
LOB (in module cx_Oracle), 24
LONG_BINARY (in module cx_Oracle), 24
LONG_STRING (in module cx_Oracle), 25

100 Index

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

ltxid (Connection attribute), 33

M
makedsn() (in module cx_Oracle), 15
max (SessionPool attribute), 48
max_lifetime_session (SessionPool attribute), 48
maxBytesPerCharacter (Connection attribute), 33
message (cx_Oracle._Error attribute), 27
min (SessionPool attribute), 48
mode (DeqOptions attribute), 59
module (Connection attribute), 33
MSG_BUFFERED (in module cx_Oracle), 17
MSG_EXPIRED (in module cx_Oracle), 18
MSG_NO_DELAY (in module cx_Oracle), 19
MSG_NO_EXPIRATION (in module cx_Oracle), 19
MSG_PERSISTENT (in module cx_Oracle), 17
MSG_PERSISTENT_OR_BUFFERED (in module

cx_Oracle), 17
MSG_PROCESSED (in module cx_Oracle), 19
MSG_READY (in module cx_Oracle), 19
MSG_WAITING (in module cx_Oracle), 19
msgid (DeqOptions attribute), 59
msgid (MessageProperties attribute), 61
msgproperties() (Connection method), 33

N
name (MessageTable attribute), 53
name (ObjectType attribute), 57
name (SessionPool attribute), 48
name (Subscription attribute), 51
namespace (Subscription attribute), 51
NATIVE_FLOAT (in module cx_Oracle), 25
NATIVE_INT (in module cx_Oracle), 25
navigation (DeqOptions attribute), 59
NCHAR (in module cx_Oracle), 25
NCLOB (in module cx_Oracle), 25
nencoding (Connection attribute), 33
newobject() (ObjectType method), 57
next() (Object method), 58
NotSupportedError, 26
NUMBER (in module cx_Oracle), 25
numElements (Variable attribute), 45

O
OBJECT (in module cx_Oracle), 25
ObjectType(), 57
offset (cx_Oracle._Error attribute), 27
OPCODE_ALLOPS (in module cx_Oracle), 21
OPCODE_ALLROWS (in module cx_Oracle), 21
OPCODE_ALTER (in module cx_Oracle), 21
OPCODE_DELETE (in module cx_Oracle), 21
OPCODE_DROP (in module cx_Oracle), 21
OPCODE_INSERT (in module cx_Oracle), 21
OPCODE_UPDATE (in module cx_Oracle), 21

open() (LOB method), 55
opened (SessionPool attribute), 48
operation (MessageQuery attribute), 53
operation (MessageRow attribute), 53
operation (MessageTable attribute), 53
OperationalError, 26
operations (Subscription attribute), 51
outconverter (Variable attribute), 45
outputtypehandler (Connection attribute), 33
outputtypehandler (Cursor attribute), 41

P
paramstyle (in module cx_Oracle), 16
parse() (Cursor method), 41
ping() (Connection method), 33
port (Subscription attribute), 51
PRELIM_AUTH (in module cx_Oracle), 19
prepare() (Connection method), 34
prepare() (Cursor method), 42
prev() (Object method), 58
priority (MessageProperties attribute), 61
ProgrammingError, 26
protocol (Subscription attribute), 51

Q
qos (Subscription attribute), 52
queries (Message attribute), 52
queueName (Message attribute), 52

R
read() (LOB method), 55
registered (Message attribute), 52
registerquery() (Subscription method), 52
release() (SessionPool method), 48
rollback() (Connection method), 34
rowcount (Cursor attribute), 42
rowfactory (Cursor attribute), 42
ROWID (in module cx_Oracle), 25
rowid (MessageRow attribute), 53
rows (MessageTable attribute), 53

S
schema (ObjectType attribute), 57
scroll() (Cursor method), 42
scrollable (Cursor attribute), 42
SessionPool() (in module cx_Oracle), 15
setelement() (Object method), 58
setfilename() (LOB method), 55
setinputsizes() (Cursor method), 42
setoutputsize() (Cursor method), 43
setvalue() (Variable method), 45
shutdown() (Connection method), 34
size (Variable attribute), 46

Index 101

cx𝑂𝑟𝑎𝑐𝑙𝑒, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒6.4.0

size() (LOB method), 55
size() (Object method), 58
SPOOL_ATTRVAL_FORCEGET (in module

cx_Oracle), 21
SPOOL_ATTRVAL_NOWAIT (in module cx_Oracle), 21
SPOOL_ATTRVAL_TIMEDWAIT (in module

cx_Oracle), 21
SPOOL_ATTRVAL_WAIT (in module cx_Oracle), 21
startup() (Connection method), 34
state (MessageProperties attribute), 61
statement (Cursor attribute), 43
stmtcachesize (Connection attribute), 34
stmtcachesize (SessionPool attribute), 48
STRING (in module cx_Oracle), 25
SUBSCR_GROUPING_CLASS_TIME (in module

cx_Oracle), 22
SUBSCR_GROUPING_TYPE_LAST (in module

cx_Oracle), 22
SUBSCR_GROUPING_TYPE_SUMMARY (in module

cx_Oracle), 22
SUBSCR_NAMESPACE_AQ (in module cx_Oracle), 22
SUBSCR_NAMESPACE_DBCHANGE (in module

cx_Oracle), 22
SUBSCR_PROTO_HTTP (in module cx_Oracle), 22
SUBSCR_PROTO_MAIL (in module cx_Oracle), 22
SUBSCR_PROTO_OCI (in module cx_Oracle), 23
SUBSCR_PROTO_SERVER (in module cx_Oracle), 23
SUBSCR_QOS_BEST_EFFORT (in module cx_Oracle),

23
SUBSCR_QOS_DEREG_NFY (in module cx_Oracle),

23
SUBSCR_QOS_QUERY (in module cx_Oracle), 23
SUBSCR_QOS_RELIABLE (in module cx_Oracle), 23
SUBSCR_QOS_ROWIDS (in module cx_Oracle), 23
subscribe() (Connection method), 34
subscription (Message attribute), 52
SYSASM (in module cx_Oracle), 19
SYSBKP (in module cx_Oracle), 19
SYSDBA (in module cx_Oracle), 19
SYSDGD (in module cx_Oracle), 19
SYSKMT (in module cx_Oracle), 19
SYSOPER (in module cx_Oracle), 19
SYSRAC (in module cx_Oracle), 19

T
tables (Message attribute), 52
tables (MessageQuery attribute), 53
threadsafety (in module cx_Oracle), 16
Time() (in module cx_Oracle), 16
TimeFromTicks() (in module cx_Oracle), 16
timeout (SessionPool attribute), 48
timeout (Subscription attribute), 52
TIMESTAMP (in module cx_Oracle), 26
Timestamp() (in module cx_Oracle), 16

TimestampFromTicks() (in module cx_Oracle), 16
tnsentry (Connection attribute), 35
tnsentry (SessionPool attribute), 48
transformation (DeqOptions attribute), 60
transformation (EnqOptions attribute), 60
trim() (LOB method), 56
trim() (Object method), 58
txid (Message attribute), 52
type (Message attribute), 53
type (Variable attribute), 46

U
unsubscribe() (Connection method), 36
username (Connection attribute), 36
username (SessionPool attribute), 48

V
values (Variable attribute), 46
var() (Cursor method), 43
version (Connection attribute), 36
version (in module cx_Oracle), 17
visibility (DeqOptions attribute), 60
visibility (EnqOptions attribute), 60

W
wait (DeqOptions attribute), 60
wait_timeout (SessionPool attribute), 49
Warning, 26
write() (LOB method), 56

102 Index

	cx_Oracle 6 Installation
	Overview
	Quick Start cx_Oracle Installation
	Oracle Client and Oracle Database Interoperability
	Installing cx_Oracle on Linux
	Installing cx_Oracle on Oracle Linux
	Installing cx_Oracle on Windows
	Installing cx_Oracle on macOS
	Install Using GitHub
	Install Using Source from PyPI
	Upgrading from cx_Oracle 5
	Installing cx_Oracle 5.3
	Troubleshooting

	Module Interface
	Constants
	Types
	Exceptions
	Exception handling

	Connection Object
	Cursor Object
	Variable Objects
	SessionPool Object
	Subscription Object
	Message Objects
	Message Table Objects
	Message Row Objects
	Message Query Objects

	LOB Objects
	Object Type Objects
	Object Objects

	Advanced Queuing
	Dequeue Options
	Enqueue Options
	Message Properties

	What’s New
	cx_Oracle 6.0

	cx_Oracle Release Notes
	6.x releases
	5.x releases
	Older releases

	License
	Indices and tables
	Python Module Index

