

Welcome to cx_Oracle’s documentation!

cx_Oracle is a module that enables access to Oracle Database and conforms
to the Python database API specification. This module is currently tested
against Oracle Client 19, 18, 12, and 11.2, and Python 2.7, 3.5, 3.6 and
3.7.

cx_Oracle is distributed under an open-source license
(the BSD license). A detailed description of cx_Oracle changes can be found in
the release notes.

Contents:

User Guide

	Introduction to cx_Oracle
	Architecture

	Features

	Getting Started

	cx_Oracle 7 Installation
	Overview

	Quick Start cx_Oracle Installation

	Oracle Client and Oracle Database Interoperability

	Installing cx_Oracle on Linux
	Install cx_Oracle

	Install Oracle Client

	Installing cx_Oracle RPMs on Oracle Linux

	Installing cx_Oracle on Windows
	Install cx_Oracle

	Install Oracle Client

	Installing cx_Oracle on macOS
	Install Python

	Install cx_Oracle

	Install Oracle Instant Client

	Installing cx_Oracle without Internet Access

	Install Using GitHub

	Install Using Source from PyPI

	Upgrading from Older Versions

	Installing cx_Oracle 5.3

	Troubleshooting

	Connecting to Oracle Database
	Establishing Database Connections

	Closing Connections

	Oracle Environment Variables

	Optional Oracle Configuration Files
	Optional Oracle Net Configuration Files

	Optional Oracle Client Configuration Files

	Connection Strings
	Easy Connect Syntax for Connection Strings

	Oracle Net Connect Descriptor Strings

	Net Service Names for Connection Strings

	JDBC and Oracle SQL Developer Connection Strings

	Connection Pooling
	Session CallBacks for Setting Pooled Connection State

	Heterogeneous and Homogeneous Connection Pools

	Database Resident Connection Pooling (DRCP)

	Connecting Using Proxy Authentication

	Connecting Using External Authentication
	Using an Oracle Wallet for External Authentication

	Operating System Authentication

	Privileged Connections

	Starting and Stopping Oracle Database

	Securely Encrypting Network Traffic to Oracle Database

	Resetting Passwords

	Connecting to Sharded Databases

	SQL Execution
	SQL Queries
	Fetch Methods

	Closing Cursors

	Tuning Fetch Performance

	Query Column Metadata

	Fetch Data Types

	Changing Fetched Data Types with Output Type Handlers

	Fetched Number Precision

	Changing Query Results with Outconverters

	Scrollable Cursors

	Limiting Rows

	Querying Corrupt Data

	INSERT and UPDATE Statements
	Inserting NULLs

	PL/SQL Execution
	PL/SQL Stored Procedures

	PL/SQL Stored Functions

	Anonymous PL/SQL Blocks

	Using DBMS_OUTPUT

	Implicit results

	Edition-Based Redefinition (EBR)

	Using Bind Variables
	Binding By Name or Position

	Bind Direction

	Binding Null Values

	Binding ROWID Values

	DML RETURNING Bind Variables

	LOB Bind Variables

	REF CURSOR Bind Variables

	Binding PL/SQL Collections

	Binding PL/SQL Records

	Binding Spatial Datatypes

	Changing Bind Data Types using an Input Type Handler

	Binding Multiple Values to a SQL WHERE IN Clause

	Binding Column and Table Names

	Using CLOB and BLOB Data
	Simple Insertion of LOBs

	Fetching LOBs as Strings and Bytes

	Streaming LOBs (Read)

	Streaming LOBs (Write)

	Temporary LOBs

	Working with the JSON Data Type

	Simple Oracle Document Access (SODA)
	Overview

	SODA Example

	Working with XMLTYPE

	Batch Statement Execution and Bulk Loading
	Batch Execution of SQL

	Batch Execution of PL/SQL

	Handling Data Errors

	Identifying Affected Rows

	DML RETURNING

	Predefining Memory Areas

	Loading CSV Files into Oracle Database

	Exception Handling

	Oracle Advanced Queuing
	Creating a Queue

	Enqueuing Messages

	Dequeuing Messages

	Using Object Queues

	Changing Queue and Message Options

	Bulk Enqueue and Dequeue

	Continuous Query Notification
	Requirements

	Creating a Subscription

	Registering Queries

	Transaction Management
	Autocommitting

	Explicit Transactions

	Characters Sets and National Language Support (NLS)
	Setting the Client Character Set

	Character Set Example

	Finding the Database and Client Character Set

	High Availability with cx_Oracle
	General HA Recommendations

	Network Configuration

	Fast Application Notification (FAN)

	Application Continuity (AC)

	Transaction Guard

	Tracing SQL and PL/SQL Statements
	Subclass Connections

	Oracle Database End-to-End Tracing

	Low Level SQL Tracing in cx_Oracle

API Manual

	Module Interface
	Constants
	General

	Advanced Queuing: Delivery Modes

	Advanced Queuing: Dequeue Modes

	Advanced Queuing: Dequeue Navigation Modes

	Advanced Queuing: Dequeue Visibility Modes

	Advanced Queuing: Dequeue Wait Modes

	Advanced Queuing: Enqueue Visibility Modes

	Advanced Queuing: Message States

	Advanced Queuing: Other

	Connection Authorization Modes

	Database Shutdown Modes

	Event Types

	Operation Codes

	Session Pool Get Modes

	Session Pool Purity

	Subscription Grouping Classes

	Subscription Grouping Types

	Subscription Namespaces

	Subscription Protocols

	Subscription Quality of Service

	Types

	Exceptions

	Exception handling

	Connection Object

	Cursor Object

	Variable Objects

	SessionPool Object

	Subscription Object
	Message Objects

	Message Table Objects

	Message Row Objects

	Message Query Objects

	LOB Objects

	Object Type Objects
	Object Objects

	Advanced Queuing (AQ)
	Queues

	Dequeue Options

	Enqueue Options

	Message Properties

	Soda Document Class
	SODA Database Object

	SODA Collection Object

	SODA Document Object

	SODA Document Cursor Object

	SODA Operation Object

Indices and tables

	Index

	Module Index

	Search Page

Introduction to cx_Oracle

cx_Oracle is a Python extension module that enables Python access to Oracle
Database. It conforms to the Python Database API v2.0 Specification [https://www.python.org/dev/peps/pep-0249/] with a considerable number of
additions and a couple of exclusions.

Architecture

Python programs call cx_Oracle functions. Internally cx_Oracle dynamically
loads Oracle Client libraries to access Oracle Database.

[image: ../_images/cx_Oracle_arch.png]
Fig. 1 cx_Oracle Architecture

cx_Oracle is typically installed from PyPI [https://pypi.org/project/cx-Oracle/] using pip [http://pip.readthedocs.io/en/latest/installing/]. The Oracle Client
libraries need to be installed separately. The libraries can be obtained from
an installation of Oracle Instant Client [https://www.oracle.com/database/technologies/instant-client.html], from a
full Oracle Client installation, or even from an Oracle Database installation
(if Python is running on the same machine as the database).

Some behaviors of the Oracle Client libraries can optionally be configured with
an oraaccess.xml file, for example to enable auto-tuning of a statement
cache. See Optional Oracle Client Configuration Files.

The Oracle Net layer can optionally be configured with files such as
tnsnames.ora and sqlnet.ora, for example to enable network
encryption. See Optional Oracle Net Configuration Files.

Oracle environment variables that are set before cx_Oracle first creates a
database connection will affect cx_Oracle behavior. Optional variables include
NLS_LANG, NLS_DATE_FORMAT and TNS_ADMIN. See Oracle Environment Variables.

Features

The cx_Oracle feature highlights are:

	Easily installed from PyPI

	Support for Python 2 and 3, and for multiple Oracle Database versions

	Execution of SQL and PL/SQL statements

	Extensive Oracle data type support, including large objects (CLOB and
BLOB) and binding of SQL objects

	Connection management, including connection pooling

	Oracle Database High Availability features

	Full use of Oracle Network Service infrastructure, including encrypted
network traffic and security features

A complete list of supported features can be seen here [https://oracle.github.io/python-cx_Oracle/index.html#features].

Getting Started

Install cx_Oracle using the installation steps.

Create a script query.py as shown below:

query.py

from __future__ import print_function
import cx_Oracle

Establish the database connection
connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com/orclpdb1")

Obtain a cursor
cursor = connection.cursor()

Data for binding
managerId = 145
firstName = "Peter"

Execute the query
sql = """SELECT first_name, last_name
 FROM employees
 WHERE manager_id = :mid AND first_name = :fn"""
cursor.execute(sql, mid = managerId, fn = firstName)

Loop over the result set
for row in cursor:
 print(row)

This uses Oracle’s sample HR schema [https://github.com/oracle/db-sample-schemas].

Simple connection to the database requires a username,
password and connection string. Locate your Oracle Database user name and
password [https://www.youtube.com/watch?v=WDJacg0NuLo] and the database
connection string, and use them in query.py. For
cx_Oracle the connection string is commonly of the format
hostname/servicename, using the host name where the database is running and
the Oracle Database service name of the database instance.

The cursor is the object that allows statements to be
executed and results (if any) fetched.

The data values in managerId and firstName are ‘bound’ to the statement
placeholder ‘bind variables’ :mid and :fn when the statement is
executed. This separates the statement text from the data, which helps avoid
SQL Injection security risks. Binding is also important for
performance and scalability.

The cursor allows rows to be iterated over and displayed.

Run the script:

python query.py

The output is:

('Peter', 'Hall')
('Peter', 'Tucker')

Example cx_Oracle scripts and a tutorial are in the GitHub samples directory [https://github.com/oracle/python-cx_Oracle/tree/master/samples].

cx_Oracle 7 Installation

Overview

To use cx_Oracle 7 with Python and Oracle Database you need:

	Python 2.7 or 3.5 and higher. Older versions of cx_Oracle may work
with older versions of Python.

	Oracle client libraries. These can be from the free Oracle Instant
Client [http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html],
or those included in Oracle Database if Python is on the same
machine as the database. Oracle client libraries versions 19, 18, 12,
and 11.2 are supported on Linux, Windows and macOS. Users have
also reported success with other platforms.

	An Oracle Database. Oracle’s standard client-server version
interoperability allows cx_Oracle to connect to both older and newer
databases.

If you are upgrading, review the release notes.

Quick Start cx_Oracle Installation

	An installation of Python [https://www.python.org/downloads] is
needed. Python 2.7 and Python 3.5 and higher are supported by cx_Oracle 7.

	Install cx_Oracle from PyPI [https://pypi.org/project/cx-Oracle/] with:

python -m pip install cx_Oracle --upgrade

Note: if a binary wheel package is not available for your platform,
the source package will be downloaded instead. This will be compiled
and the resulting binary installed.

If you are behind a proxy, specify your proxy server:

python -m pip install cx_Oracle --proxy=http://proxy.example.com:80 --upgrade

	Add Oracle 19, 18, 12 or 11.2 client libraries to your operating
system library search path such as PATH on Windows or
LD_LIBRARY_PATH on Linux. On macOS move the files to ~/lib
or /usr/local/lib.

	If your database is on a remote computer, then download and unzip the client
libraries from the free Oracle Instant Client [http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html]
“Basic” or “Basic Light” package for your operating system
architecture.

Instant Client on Windows requires an appropriate Microsoft
Windows Redistributables [https://oracle.github.io/odpi/doc/installation.html#windows].
On Linux, the libaio (sometimes called libaio1) package
is needed.

	Alternatively use the client libraries already available in a
locally installed database such as the free Oracle XE [https://www.oracle.com/database/technologies/appdev/xe.html]
release.

Version 19, 18 and 12.2 client libraries can connect to Oracle Database 11.2
or greater. Version 12.1 client libraries can connect to Oracle Database 10.2
or greater. Version 11.2 client libraries can connect to Oracle Database 9.2
or greater.

The database abstraction layer in cx_Oracle is ODPI-C [https://github.com/oracle/odpi], which means that the ODPI-C
installation instructions [https://oracle.github.io/odpi/doc/installation.html] can be useful
to review.

	Create a script like the one below:

myscript.py

from __future__ import print_function

import cx_Oracle

Connect as user "hr" with password "welcome" to the "orclpdb1" service running on this computer.
connection = cx_Oracle.connect("hr", "welcome", "localhost/orclpdb1")

cursor = connection.cursor()
cursor.execute("""
 SELECT first_name, last_name
 FROM employees
 WHERE department_id = :did AND employee_id > :eid""",
 did = 50,
 eid = 190)
for fname, lname in cursor:
 print("Values:", fname, lname)

Locate your Oracle Database username and password, and the database
connection string. The connection string is commonly of the format
hostname/servicename, using the hostname where the database is
running, and the service name of the Oracle Database instance.

Substitute your username, password and connection string in the
code. Run the Python script, for example:

python myscript.py

You can learn how to use cx_Oracle from the API documentation
and samples [https://github.com/oracle/python-cx_Oracle/blob/master/samples].

If you run into installation trouble, check out the section on Troubleshooting.

Oracle Client and Oracle Database Interoperability

cx_Oracle requires Oracle Client libraries. The libraries provide the
necessary network connectivity to access an Oracle Database instance.
They also provide basic and advanced connection management and data
features to cx_Oracle.

The simplest way to get Oracle Client libraries is to install the free
Oracle Instant Client [http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html]
“Basic” or “Basic Light” package. The libraries are also available in
any Oracle Database installation or full Oracle Client installation.

Oracle’s standard client-server network interoperability allows
connections between different versions of Oracle Client libraries and
Oracle Database. For certified configurations see Oracle Support’s
Doc ID 207303.1 [https://support.oracle.com/epmos/faces/DocumentDisplay?id=207303.1].
In summary, Oracle Client 19, 18 and 12.2 can connect to Oracle Database 11.2 or
greater. Oracle Client 12.1 can connect to Oracle Database 10.2 or
greater. Oracle Client 11.2 can connect to Oracle Database 9.2 or
greater. The technical restrictions on creating connections may be
more flexible. For example Oracle Client 12.2 can successfully
connect to Oracle Database 10.2.

cx_Oracle uses the shared library loading mechanism available on each
supported platform to load the Oracle Client libraries at runtime. It
does not need to be rebuilt for different versions of the libraries.
Since a single cx_Oracle binary can use different client versions and
also access multiple database versions, it is important your
application is tested in your intended release environments. Newer
Oracle clients support new features, such as the oraaccess.xml [http://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-9D12F489-EC02-46BE-8CD4-5AECED0E2BA2] external configuration
file available with 12.1 or later clients, session pool improvements,
call timeouts with 18 or later clients, and other enhancements [http://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-D60519C3-406F-4588-8DA1-D475D5A3E1F6].

The cx_Oracle function clientversion() can be used
to determine which Oracle Client version is in use and the attribute
Connection.version can be used to determine which Oracle
Database version a connection is accessing. These can then be used to
adjust application behavior accordingly. Attempts to use some Oracle
features that are not supported by a particular client/server
combination may result in runtime errors. These include:

	when attempting to access attributes that are not supported by the
current Oracle Client library you will get the error “ORA-24315: illegal
attribute type”

	when attempting to use implicit results with Oracle Client 11.2
against Oracle Database 12c you will get the error “ORA-29481:
Implicit results cannot be returned to client”

	when attempting to get array DML row counts with Oracle Client
11.2 you will get the error “DPI-1050: Oracle Client library must be at
version 12.1 or higher”

Installing cx_Oracle on Linux

This section discusses the generic installation method on Linux.
Using Python and cx_Oracle RPM packages on Oracle Linux is discussed
in Installing cx_Oracle RPMs on Oracle Linux.

Install cx_Oracle

The generic way to install cx_Oracle on Linux is to use Python’s Pip [http://pip.readthedocs.io/en/latest/installing/] package to
install cx_Oracle from PyPI [https://pypi.org/project/cx-Oracle/]:

python -m pip install cx_Oracle --upgrade

If you are behind a proxy, specify your proxy server:

python -m pip install cx_Oracle --proxy=http://proxy.example.com:80 --upgrade

This will download and install a pre-compiled binary if one is
available [https://pypi.org/project/cx-Oracle/] for your
architecture. If a pre-compiled binary is not available, the source
will be downloaded, compiled, and the resulting binary installed.
Compiling cx_Oracle requires the Python.h header file. If you are
using the default python package, this file is in the python-devel
package or equivalent.

Install Oracle Client

Using cx_Oracle requires Oracle Client libraries to be installed.
These provide the necessary network connectivity allowing cx_Oracle
to access an Oracle Database instance. Oracle Client versions 19, 18,
12 and 11.2 are supported.

	If your database is on a remote computer, then download the free Oracle
Instant Client [http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html]
“Basic” or “Basic Light” package for your operating system
architecture. Use the RPM or ZIP packages, based on your
preferences.

	Alternatively use the client libraries already available in a
locally installed database such as the free Oracle XE [https://www.oracle.com/database/technologies/appdev/xe.html]
release.

Oracle Instant Client Zip Files

To use cx_Oracle with Oracle Instant Client zip files:

	Download an Oracle 19, 18, 12, or 11.2 “Basic” or “Basic Light” zip file: 64-bit [http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html]
or 32-bit [http://www.oracle.com/technetwork/topics/linuxsoft-082809.html], matching your
Python architecture.

	Unzip the package into a single directory that is accessible to your
application. For example:

mkdir -p /opt/oracle
cd /opt/oracle
unzip instantclient-basic-linux.x64-19.3.0.0.0dbru.zip

	Install the libaio package with sudo or as the root user. For example:

sudo yum install libaio

On some Linux distributions this package is called libaio1 instead.

	If there is no other Oracle software on the machine that will be
impacted, permanently add Instant Client to the runtime link
path. For example, with sudo or as the root user:

sudo sh -c "echo /opt/oracle/instantclient_19_3 > /etc/ld.so.conf.d/oracle-instantclient.conf"
sudo ldconfig

Alternatively, set the environment variable LD_LIBRARY_PATH to
the appropriate directory for the Instant Client version. For
example:

export LD_LIBRARY_PATH=/opt/oracle/instantclient_19_3:$LD_LIBRARY_PATH

	If you intend to co-locate optional Oracle configuration files such
as tnsnames.ora, sqlnet.ora or oraaccess.xml with
Instant Client, then put them in the network/admin
subdirectory. With Instant Client 12.2 or earlier, create this
manually. For example:

mkdir -p /opt/oracle/instantclient_12_2/network/admin

This is the default Oracle configuration directory for executables
linked with this Instant Client.

Alternatively, Oracle configuration files can be put in another,
accessible directory. Then set the environment variable
TNS_ADMIN to that directory name.

Oracle Instant Client RPMs

To use cx_Oracle with Oracle Instant Client RPMs:

	Download an Oracle 19, 18, 12, or 11.2 “Basic” or “Basic Light” RPM: 64-bit [http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html]
or 32-bit [http://www.oracle.com/technetwork/topics/linuxsoft-082809.html], matching your
Python architecture.

Oracle’s yum server has Instant Client RPMs for Oracle Linux 7 [http://yum.oracle.com/repo/OracleLinux/OL7/oracle/instantclient/x86_64/index.html]
and Instant Client RPMs for Oracle Linux 6 [http://yum.oracle.com/repo/OracleLinux/OL6/oracle/instantclient/x86_64/index.html]
that can be downloaded without needing a click-through.

	Install the downloaded RPM with sudo or as the root user. For example:

sudo yum install oracle-instantclient19.3-basic-19.3.0.0.0-1.x86_64.rpm

Yum will automatically install required dependencies, such as libaio.

	For Instant Client 19, the system library search path is
automatically configured during installation.

For older versions, if there is no other Oracle software on the machine that will be
impacted, permanently add Instant Client to the runtime link
path. For example, with sudo or as the root user:

sudo sh -c "echo /usr/lib/oracle/18.3/client64/lib > /etc/ld.so.conf.d/oracle-instantclient.conf"
sudo ldconfig

Alternatively, for version 18 and earlier, every shell running
Python will need to have the environment variable
LD_LIBRARY_PATH set to the appropriate directory for the
Instant Client version. For example:

export LD_LIBRARY_PATH=/usr/lib/oracle/18.3/client64/lib:$LD_LIBRARY_PATH

	If you intend to co-locate optional Oracle configuration files such
as tnsnames.ora, sqlnet.ora or oraaccess.xml with
Instant Client, then put them in the network/admin subdirectory
under lib/. With Instant Client 12.2 or earlier, create this
manually. For example:

sudo mkdir -p /usr/lib/oracle/12.2/client64/lib/network/admin

This is the default Oracle configuration directory for executables
linked with this Instant Client.

Alternatively, Oracle configuration files can be put in another,
accessible directory. Then set the environment variable
TNS_ADMIN to that directory name.

Local Database or Full Oracle Client

cx_Oracle applications can use Oracle Client 19, 18, 12, or 11.2 libraries
from a local Oracle Database or full Oracle Client installation.

The libraries must be either 32-bit or 64-bit, matching your
Python architecture.

	Set required Oracle environment variables by running the Oracle environment
script. For example:

source /usr/local/bin/oraenv

For Oracle Database XE, run:

source /u01/app/oracle/product/11.2.0/xe/bin/oracle_env.sh

	Optional Oracle configuration files such as tnsnames.ora,
sqlnet.ora or oraaccess.xml can be placed in
$ORACLE_HOME/network/admin.

Alternatively, Oracle configuration files can be put in another,
accessible directory. Then set the environment variable
TNS_ADMIN to that directory name.

Installing cx_Oracle RPMs on Oracle Linux

Python and cx_Oracle RPM packages are available from the Oracle Linux yum server [http://yum.oracle.com/]. Various versions of Python are easily installed.
Using the yum server makes it easy to keep up to date.

Installation instructions are at Oracle Linux for Python
Developers [https://yum.oracle.com/oracle-linux-python.html].

Installing cx_Oracle on Windows

Install cx_Oracle

Use Python’s Pip [http://pip.readthedocs.io/en/latest/installing/]
package to install cx_Oracle from PyPI [https://pypi.org/project/cx-Oracle/]:

python -m pip install cx_Oracle --upgrade

If you are behind a proxy, specify your proxy server:

python -m pip install cx_Oracle --proxy=http://proxy.example.com:80 --upgrade

This will download and install a pre-compiled binary if one is
available [https://pypi.org/project/cx-Oracle/] for your
architecture. If a pre-compiled binary is not available, the source
will be downloaded, compiled, and the resulting binary installed.

Install Oracle Client

Using cx_Oracle requires Oracle Client libraries to be installed.
These provide the necessary network connectivity allowing cx_Oracle
to access an Oracle Database instance. Oracle Client versions 18,
12 and 11.2 are supported.

	If your database is on a remote computer, then download the free Oracle
Instant Client [http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html]
“Basic” or “Basic Light” package for your operating system
architecture.

	Alternatively use the client libraries already available in a
locally installed database such as the free Oracle XE [https://www.oracle.com/database/technologies/appdev/xe.html]
release.

Oracle Instant Client Zip Files

To use cx_Oracle with Oracle Instant Client zip files:

	Download an Oracle 18, 12, or 11.2 “Basic” or “Basic Light” zip
file: 64-bit [http://www.oracle.com/technetwork/topics/winx64soft-089540.html]
or 32-bit [http://www.oracle.com/technetwork/topics/winsoft-085727.html], matching your
Python architecture.

	Unzip the package into a directory that is accessible to your
application. For example unzip
instantclient-basic-windows.x64-18.3.0.0.0dbru.zip to
C:\oracle\instantclient_18_3.

	Add this directory to the PATH environment variable. For
example, on Windows 7, update PATH in Control Panel -> System
-> Advanced System Settings -> Advanced -> Environment Variables ->
System Variables -> PATH. The Instant Client directory must occur
in PATH before any other Oracle directories.

Restart any open command prompt windows.

To avoid interfering with existing tools that require other Oracle
Client versions, instead of updating the system-wide PATH variable, you
may prefer to write a batch file that sets PATH, for example:

REM mypy.bat
SET PATH=C:\oracle\instantclient_18_3;%PATH%
python %*

Invoke this batch file every time you want to run python.

Alternatively use SET to change your PATH in each command
prompt window before you run python.

	Oracle Instant Client libraries require a Visual Studio redistributable with
a 64-bit or 32-bit architecture to match Instant Client’s architecture.
Each Instant Client version requires a different redistributable version:

	For Instant Client 18 or 12.2 install VS 2013 [https://support.microsoft.com/en-us/kb/2977003#bookmark-vs2013]

	For Instant Client 12.1 install VS 2010 [https://support.microsoft.com/en-us/kb/2977003#bookmark-vs2010]

	For Instant Client 11.2 install VS 2005 64-bit [https://www.microsoft.com/en-us/download/details.aspx?id=18471] or VS 2005 32-bit [https://www.microsoft.com/en-ca/download/details.aspx?id=3387]

	If you intend to co-locate optional Oracle configuration files such
as tnsnames.ora, sqlnet.ora or oraaccess.xml with
Instant Client, then create a network\admin subdirectory, for example
C:\oracle\instantclient_18_3\network\admin.

This is the default Oracle configuration directory for executables
linked with this Instant Client.

Alternatively, Oracle configuration files can be put in another,
accessible directory. Then set the environment variable
TNS_ADMIN to that directory name.

Local Database or Full Oracle Client

cx_Oracle applications can use Oracle Client 18, 12, or 11.2
libraries libraries from a local Oracle Database or full Oracle
Client.

The Oracle libraries must be either 32-bit or 64-bit, matching your
Python architecture.

	Set the environment variable PATH to include the path that
contains OCI.dll, if it is not already set. For example, on Windows
7, update PATH in Control Panel -> System -> Advanced System
Settings -> Advanced -> Environment Variables -> System Variables
-> PATH.

Restart any open command prompt windows.

	Optional Oracle configuration files such as tnsnames.ora,
sqlnet.ora or oraaccess.xml can be placed in the
network\admin subdirectory of the Oracle Database software
installation.

Alternatively, Oracle configuration files can be put in another,
accessible directory. Then set the environment variable
TNS_ADMIN to that directory name.

Installing cx_Oracle on macOS

Install Python

Make sure you are not using the bundled Python. This has restricted
entitlements and will fail to load Oracle client libraries. Instead
use Homebrew [https://brew.sh] or Python.org [https://www.python.org/downloads].

Install cx_Oracle

Use Python’s Pip [http://pip.readthedocs.io/en/latest/installing/]
package to install cx_Oracle from PyPI [https://pypi.org/project/cx-Oracle/]:

python -m pip install cx_Oracle --upgrade

If you are behind a proxy, specify your proxy server:

python -m pip install cx_Oracle --proxy=http://proxy.example.com:80 --upgrade

The source will be downloaded, compiled, and the resulting binary
installed.

Install Oracle Instant Client

cx_Oracle requires Oracle Client libraries, which are found in Oracle
Instant Client for macOS. These provide the necessary network
connectivity allowing cx_Oracle to access an Oracle Database
instance. Oracle Client versions 18, 12 and 11.2 are supported.

To use cx_Oracle with Oracle Instant Client zip files:

	Download the Oracle 18, 12 or 11.2 “Basic” or “Basic Light” zip file from here [http://www.oracle.com/technetwork/topics/intel-macsoft-096467.html].
Choose either a 64-bit or 32-bit package, matching your
Python architecture.

	Unzip the package into a single directory that is accessible to your
application. For example:

mkdir -p /opt/oracle
unzip instantclient-basic-macos.x64-18.1.0.0.0.zip

	Add links to $HOME/lib or /usr/local/lib to enable
applications to find the library. For example:

mkdir ~/lib
ln -s /opt/oracle/instantclient_18_1/libclntsh.dylib ~/lib/

Alternatively, copy the required OCI libraries. For example:

mkdir ~/lib
cp /opt/oracle/instantclient_18_1/{libclntsh.dylib.18.1,libclntshcore.dylib.18.1,libons.dylib,libnnz18.dylib,libociei.dylib} ~/lib/

For Instant Client 11.2, the OCI libraries must be copied. For example:

mkdir ~/lib
cp /opt/oracle/instantclient_11_2/{libclntsh.dylib.11.1,libnnz11.dylib,libociei.dylib} ~/lib/

	If you intend to co-locate optional Oracle configuration files such
as tnsnames.ora, sqlnet.ora or oraaccess.xml with
Instant Client, then create a network/admin subdirectory, if it
does not already exist. For example:

mkdir -p /opt/oracle/instantclient_12_2/network/admin

This is the default Oracle configuration directory for executables
linked with this Instant Client.

Alternatively, Oracle configuration files can be put in another,
accessible directory. Then set the environment variable
TNS_ADMIN to that directory name.

Installing cx_Oracle without Internet Access

To install cx_Oracle on a computer that is not connected to the
internet, download the appropriate cx_Oracle file from PyPI [https://pypi.org/project/cx-Oracle/#files]. Transfer this file to
the offline computer and install it with:

python -m pip install "<file_name>"

Then follow the general cx_Oracle platform installation instructions
to install Oracle client libraries.

Install Using GitHub

In order to install using the source on GitHub, use the following commands:

git clone https://github.com/oracle/python-cx_Oracle.git cx_Oracle
cd cx_Oracle
git submodule init
git submodule update
python setup.py install

Note that if you download a source zip file directly from GitHub then
you will also need to download an ODPI-C [https://github.com/oracle/odpi] source zip file and extract it
inside the directory called “odpi”.

cx_Oracle source code is also available from oss.oracle.com. This can
be cloned with:

git clone git://oss.oracle.com/git/oracle/python-cx_Oracle.git cx_Oracle
cd cx_Oracle
git submodule init
git submodule update

Install Using Source from PyPI

The source package can be downloaded manually from
PyPI [https://pypi.org/project/cx-Oracle/] and extracted, after
which the following commands should be run:

python setup.py build
python setup.py install

Upgrading from Older Versions

Review the release notes for deprecations and modify any
affected code.

If you are upgrading from cx_Oracle 5 note these installation changes:

	When using Oracle Instant Client, you should not set ORACLE_HOME.

	On Linux, cx_Oracle 6 and higher no longer uses Instant Client RPMs
automatically. You must set LD_LIBRARY_PATH or use ldconfig to
locate the Oracle client library.

	PyPI no longer allows Windows installers or Linux RPMs to be
hosted. Use the supplied cx_Oracle Wheels instead, or use RPMs
from Oracle, see Installing cx_Oracle RPMs on Oracle Linux.

Installing cx_Oracle 5.3

If you require cx_Oracle 5.3, download a Windows installer from PyPI [https://pypi.org/project/cx-Oracle/] or use python -m pip
install cx-oracle==5.3 to install from source.

Very old versions of cx_Oracle can be found in the files section at
SourceForce [https://sourceforge.net/projects/cx-oracle/files/].

Troubleshooting

If installation fails:

	Use option -v with pip. Review your output and logs. Try to install
using a different method. Google anything that looks like an error.
Try some potential solutions.

	Was there a network connection error? Do you need to set the
environment variables http_proxy and/or https_proxy? Or
try pip install --proxy=http://proxy.example.com:80 cx_Oracle
--upgrade?

	If upgrading gave no errors but the old version is still
installed, try pip install cx_Oracle --upgrade
--force-reinstall

	If you do not have access to modify your system version of
Python, can you use pip install cx_Oracle --upgrade --user
or venv?

	Do you get the error “No module named pip”? The pip module is builtin
to Python from version 2.7.9 but is sometimes removed by the OS. Use the
venv module (builtin to Python 3.x) or virtualenv module (Python 2.x)
instead.

	Do you get the error “fatal error: dpi.h: No such file or directory”
when building from source code? Ensure that your source installation has
a subdirectory called “odpi” containing files. If missing, review the
section on Install Using GitHub.

If using cx_Oracle fails:

	Do you get the error “DPI-1047: Oracle Client library cannot be
loaded”?

	Check that Python, cx_Oracle and your Oracle Client libraries
are all 64-bit or all 32-bit. The DPI-1047 message will
tell you whether the 64-bit or 32-bit Oracle Client is needed
for your Python.

	On Windows, restart your command prompt and use set PATH
to check the environment variable has the correct Oracle
Client listed before any other Oracle directories.

	On Windows, use the DIR command on the directory set in
PATH. Verify that OCI.DLL exists there.

	On Windows, check that the correct Windows Redistributables [https://oracle.github.io/odpi/doc/installation.html#windows] have
been installed.

	On Linux, check the LD_LIBRARY_PATH environment variable
contains the Oracle Client library directory.

	On macOS, make sure Oracle Instant Client is in ~/lib or
/usr/local/lib and that you are not using the bundled Python (use
Homebrew [https://brew.sh] or Python.org [https://www.python.org/downloads] instead).

	If you have both Python 2 and 3 installed, make sure you are
using the correct python and pip (or python3 and pip3)
executables.

Connecting to Oracle Database

This chapter covers connecting to Oracle Database using cx_Oracle. It
explains the various forms of connections and how to manage them.

Establishing Database Connections

There are two ways to connect to Oracle Database using cx_Oracle:

	Standalone connections

These are useful when the application maintains a single user
session to a database. Connections are created by
cx_Oracle.connect() or its alias
cx_Oracle.Connection().

	Pooled connections

Connection pooling is important for performance when applications
frequently connect and disconnect from the database. Oracle high
availability features in the pool implementation mean that small
pools can also be useful for applications that want a few
connections available for infrequent use. Pools are created with
cx_Oracle.SessionPool() and then
SessionPool.acquire() can be called to obtain a connection
from a pool.

Optional connection creation parameters allow you to utilize features
such as Sharding and Database Resident Connection Pooling (DRCP).

Once a connection is established, you can use it for SQL, PL/SQL and
SODA.

Example: Standalone Connection to Oracle Database

import cx_Oracle

userpwd = ". . ." # Obtain password string from a user prompt or environment variable

connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com/orclpdb1", encoding="UTF-8")

cx_Oracle also supports external authentication so
passwords do not need to be in the application.

Closing Connections

Connections should be released when they are no longer needed by calling
Connection.close(). Alternatively, you may prefer to let connections
be automatically cleaned up when references to them go out of scope. This lets
cx_Oracle close dependent resources in the correct order. One other approach is
the use of a “with” block, which ensures that a connection is closed once the
block is completed. For example:

with cx_Oracle.connect(userName, password, "dbhost.example.com/orclpdb1",
 encoding="UTF-8") as connection:
 cursor = connection.cursor()
 cursor.execute("insert into SomeTable values (:1, :2)",
 (1, "Some string"))
 connection.commit()

This code ensures that, once the block is completed, the connection is closed
and resources have been reclaimed by the database. In addition, any attempt to
use the variable connection outside of the block will simply fail.

Oracle Environment Variables

Before running Python, ensure that any necessary Oracle environment
variables are configured correctly. The variables needed by cx_Oracle
depend on how Python is installed, how you connect to the database,
and what optional settings are desired.

Table 1 Common Oracle environment variables

	Oracle Environment Variables

	Purpose

	ORACLE_HOME

	The directory containing the Oracle Database software. The directory
and various configuration files must be readable by the Python process.
This variable should not be set if you are using Oracle Instant Client.

	LD_LIBRARY_PATH

	The library search path for platforms like Linux should include the
Oracle libraries, for example $ORACLE_HOME/lib or
/opt/instantclient_19_3. This variable is not needed if the
libraries are located by an alternative method, such as with
ldconfig. On other UNIX platforms you may need to set an OS
specific equivalent, such as LIBPATH or SHLIB_PATH.

	PATH

	The library search path for Windows should include the location where
OCI.DLL is found.

	TNS_ADMIN

	The directory of Oracle Database client configuration files such as
tnsnames.ora and sqlnet.ora. Needed if the configuration files
are in a non-default location. See Optional Oracle Net Configuration Files.”

	NLS_LANG

	Determines the ‘national language support’ globalization options for
cx_Oracle. If not set, a default value will be chosen by Oracle. See
Characters Sets and National Language Support (NLS).”

	NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT

	Often set in Python applications to force a consistent date format
independent of the locale. The variables are ignored if the environment
variable NLS_LANG is not set.

It is recommended to set Oracle variables in the environment before
invoking Python. However, they may also be set in application code with
os.putenv() before the first connection is established. Note that setting
operating system variables such as LD_LIBRARY_PATH must be done
before running Python.

Optional Oracle Configuration Files

Optional Oracle Net Configuration Files

Optional Oracle Net configuration files affect connections and
applications.

Common files include:

	tnsnames.ora: A configuration file that defines databases addresses
for establishing connections. See Net Service Name for Connection
Strings.

	sqlnet.ora: A profile configuration file that may contain information
on features such as connection failover, network encryption, logging, and
tracing. See Oracle Net Services Reference [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-19423B71-3F6C-430F-84CC-18145CC2A818] for more information.

	cwallet.sso: an Oracle wallet for secure connection.

The default location for these files is the network/admin
directory under the Oracle Instant Client installation directory or the
$ORACLE_HOME directory (for full database or client installations). To use
a non-default location, put the files in a directory that is accessible to
Python and set the TNS_ADMIN environment variable to
that directory path. For example, if the file
/etc/my-oracle-config/tnsnames.ora is being used, set the
TNS_ADMIN environment variable to /etc/my-oracle-config.

Optional Oracle Client Configuration Files

When cx_Oracle uses Oracle Database Clients 12.1, or later, an optional client
parameter file called oraaccess.xml can be used. This file can be used to
override some application settings, which can be useful if the application
cannot be altered. The file also enables auto-tuning of the client statement
cache.

The file is read from the same directory as the
Optional Oracle Net Configuration Files.

A sample oraaccess.xml file that sets the Oracle client ‘prefetch’
value to 50 rows and the ‘client statement cache’ value to 1, is shown
below:

<oraaccess xmlns="http://xmlns.oracle.com/oci/oraaccess"
 xmlns:oci="http://xmlns.oracle.com/oci/oraaccess"
 schemaLocation="http://xmlns.oracle.com/oci/oraaccess
 http://xmlns.oracle.com/oci/oraaccess.xsd">
 <default_parameters>
 <prefetch>
 <rows>50</rows>
 </prefetch>
 <statement_cache>
 <size>1</size>
 </statement_cache>
 </default_parameters>
</oraaccess>

Refer to the documentation on oraaccess.xml [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-9D12F489-EC02-46BE-8CD4-5AECED0E2BA2]
for more details.

Connection Strings

The data source name parameter dsn of cx_Oracle.connect() and
cx_Oracle.SessionPool() is the Oracle Database connection string
identifying which database service to connect to. The dsn string can be one
of:

	An Oracle Easy Connect string

	An Oracle Net Connect Descriptor string

	A Net Service Name mapping to a connect descriptor

For more information about naming methods, see Oracle Net Service Reference [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-E5358DEA-D619-4B7B-A799-3D2F802500F1].

Easy Connect Syntax for Connection Strings

An Easy Connect string is often the simplest connection string to use for the
data source name parameter dsn of cx_Oracle.connect() and
cx_Oracle.SessionPool(). This method does not need configuration files
such as tnsnames.ora.

For example, to connect to the Oracle Database service orclpdb1 that is
running on the host dbhost.example.com with the default Oracle
Database port 1521, use:

connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com/orclpdb1",
 encoding="UTF-8")

If the database is using a non-default port, it must be specified:

connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com:1984/orclpdb1",
 encoding="UTF-8")

The Easy Connect syntax supports Oracle Database service names. It cannot be
used with the older System Identifiers (SID).

The Easy Connect syntax has been extended in recent versions of Oracle Database
client since its introduction in 10g. Check the Easy Connect Naming method in
Oracle Net Service Administrator’s Guide [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-B0437826-43C1-49EC-A94D-B650B6A4A6EE] for the syntax to use in your
version of the Oracle Client libraries.

If you are using Oracle Client 19c, the latest Easy Connect Plus [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-8C85D289-6AF3-41BC-848B-BF39D32648BA] syntax allows the use of
multiple hosts or ports, along with optional entries for the wallet location,
the distinguished name of the database server, and even lets some network
configuration options be set. This means that a sqlnet.ora
file is not needed for some common connection scenarios.

Oracle Net Connect Descriptor Strings

The cx_Oracle.makedsn() function can be used to construct a connect
descriptor string for the data source name parameter dsn of
cx_Oracle.connect() and cx_Oracle.SessionPool(). The
makedsn() function accepts the database hostname, the port
number, and the service name. It also supports sharding
syntax.

For example, to connect to the Oracle Database service orclpdb1 that is
running on the host dbhost.example.com with the default Oracle
Database port 1521, use:

dsn = cx_Oracle.makedsn("dbhost.example.com", 1521, service_name="orclpdb1")
connection = cx_Oracle.connect("hr", userpwd, dsn, encoding="UTF-8")

Note the use of the named argument service_name. By default, the third
parameter of makedsn() is a database System Identifier (SID),
not a service name. However, almost all current databases use service names.

The value of dsn in this example is the connect descriptor string:

(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=dbhost.example.com)(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=orclpdb1)))

You can manually create similar connect descriptor strings. This lets you
extend the syntax, for example to support failover. These strings can be
embedded directly in the application:

dsn = """(DESCRIPTION=
 (FAILOVER=on)
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales1-svr)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales2-svr)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=sales.example.com)))"""

connection = cx_Oracle.connect("hr", userpwd, dsn, encoding="UTF-8")

Net Service Names for Connection Strings

Connect Descriptor Strings are commonly stored in a tnsnames.ora file and associated with a Net Service Name. This name can be
used directly for the data source name parameter dsn of
cx_Oracle.connect() and cx_Oracle.SessionPool(). For example,
given a tnsnames.ora file with the following contents:

ORCLPDB1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbhost.example.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orclpdb1)
)
)

then you could connect using the following code:

connection = cx_Oracle.connect("hr", userpwd, "orclpdb1", encoding="UTF-8")

For more information about Net Service Names, see
Database Net Services Reference [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-12C94B15-2CE1-4B98-9D0C-8226A9DDF4CB].

JDBC and Oracle SQL Developer Connection Strings

The cx_Oracle connection string syntax is different to Java JDBC and the common
Oracle SQL Developer syntax. If these JDBC connection strings reference a
service name like:

jdbc:oracle:thin:@hostname:port/service_name

for example:

jdbc:oracle:thin:@dbhost.example.com:1521/orclpdb1

then use Oracle’s Easy Connect syntax in cx_Oracle:

connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com:1521/orclpdb1", encoding="UTF-8")

Alternatively, if a JDBC connection string uses an old-style Oracle SID “system
identifier”, and the database does not have a service name:

jdbc:oracle:thin:@hostname:port:sid

for example:

jdbc:oracle:thin:@dbhost.example.com:1521:orcl

then a connect descriptor string from makedsn() can be used in the
application:

dsn = cx_Oracle.makedsn("dbhost.example.com", 1521, sid="orcl")
connection = cx_Oracle.connect("hr", userpwd, dsn, encoding="UTF-8")

Alternatively, create a tnsnames.ora (see Optional Oracle Net Configuration Files) entry, for
example:

finance =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbhost.example.com)(PORT = 1521))
 (CONNECT_DATA =
 (SID = ORCL)
)
)

This can be referenced in cx_Oracle:

connection = cx_Oracle.connect("hr", userpwd, "finance", encoding="UTF-8")

Connection Pooling

cx_Oracle’s connection pooling lets applications create and maintain a pool of
connections to the database. The internal implementation uses Oracle’s
session pool technology [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-F9662FFB-EAEF-495C-96FC-49C6D1D9625C].
In general, each connection in a cx_Oracle connection pool corresponds to one
Oracle session.

A connection pool is created by calling SessionPool(). This
is generally called during application initialization. Connections can then be
obtained from a pool by calling acquire(). The initial
pool size and the maximum pool size are provided at the time of pool creation.
When the pool needs to grow, new connections are created automatically. The
pool can shrink back to the minimum size when connections are no longer in use.
See Connection Pooling for more information.

Connections acquired from the pool should be released back to the pool using
SessionPool.release() or Connection.close() when they are no
longer required. Otherwise, they will be released back to the pool
automatically when all of the variables referencing the connection go out of
scope. The session pool can be completely closed using
SessionPool.close().

The example below shows how to connect to Oracle Database using a
connection pool:

Create the session pool
pool = cx_Oracle.SessionPool("hr", userpwd,
 "dbhost.example.com/orclpdb1", min=2, max=5, increment=1, encoding="UTF-8")

Acquire a connection from the pool
connection = pool.acquire()

Use the pooled connection
cursor = connection.cursor()
for result in cursor.execute("select * from mytab"):
 print(result)

Release the connection to the pool
pool.release(connection)

Close the pool
pool.close()

Applications that are using connections concurrently in multiple threads should
set the threaded parameter to True when creating a connection pool:

Create the session pool
pool = cx_Oracle.SessionPool("hr", userpwd, "dbhost.example.com/orclpdb1",
 min=2, max=5, increment=1, threaded=True, encoding="UTF-8")

See Threads.py [https://github.com/oracle/python-cx_Oracle/tree/master/samples/Threads.py]
for an example.

The Oracle Real-World Performance Group’s general recommendation for connection
pools is use a fixed sized pool. The values of min and max should be the
same (and increment equal to zero). the firewall, resource manager [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-2BEF5482-CF97-4A85-BD90-9195E41E74EF]
or user profile IDLE_TIME [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-ABC7AE4D-64A8-4EA9-857D-BEF7300B64C3]
should not expire idle sessions. This avoids connection storms which can
decrease throughput. See Guideline for Preventing Connection Storms: Use
Static Pools [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-7DFBA826-7CC0-4D16-B19C-31D168069B54],
which contains details about sizing of pools.

Session CallBacks for Setting Pooled Connection State

Applications can set “session” state in each connection. Examples of session
state are NLS settings from ALTER SESSION statements. Pooled connections
will retain their session state after they have been released back to the pool.
However, because pools can grow, or connections in the pool can be recreated,
there is no guarantee a subsequent acquire() call will
return a database connection that has any particular state.

The SessionPool() parameter sessionCallback
enables efficient setting of session state so that connections have a
known session state, without requiring that state to be explicitly set
after each acquire() call.

Connections can also be tagged when they are released back to the pool. The
tag is a user-defined string that represents the session state of the
connection. When acquiring connections, a particular tag can be requested. If
a connection with that tag is available, it will be returned. If not, then
another session will be returned. By comparing the actual and requested tags,
applications can determine what exact state a session has, and make any
necessary changes.

The session callback can be a Python function or a PL/SQL procedure.

There are three common scenarios for sessionCallback:

	When all connections in the pool should have the same state, use a
Python callback without tagging.

	When connections in the pool require different state for different
users, use a Python callback with tagging.

	When using Database Resident Connection Pooling (DRCP): use a PL/SQL callback with tagging.

Python Callback

If the sessionCallback parameter is a Python procedure, it will be called
whenever acquire() will return a newly created database
connection that has not been used before. It is also called when connection
tagging is being used and the requested tag is not identical to the tag in the
connection returned by the pool.

An example is:

Set the NLS_DATE_FORMAT for a session
def initSession(connection, requestedTag):
 cursor = connection.cursor()
 cursor.execute("ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI'")

Create the pool with session callback defined
pool = cx_Oracle.SessionPool("hr", userpwd, "orclpdb1",
 sessionCallback=initSession, encoding="UTF-8")

Acquire a connection from the pool (will always have the new date format)
connection = pool.acquire()

If needed, the initSession() procedure is called internally before
acquire() returns. It will not be called when previously used connections
are returned from the pool. This means that the ALTER SESSION does not need to
be executed after every acquire() call. This improves performance and
scalability.

In this example tagging was not being used, so the requestedTag parameter
is ignored.

Connection Tagging

Connection tagging is used when connections in a pool should have differing
session states. In order to retrieve a connection with a desired state, the
tag attribute in acquire() needs to be set.

When cx_Oracle is using Oracle Client libraries 12.2 or later, then cx_Oracle
uses ‘multi-property tags’ and the tag string must be of the form of one or
more “name=value” pairs separated by a semi-colon, for example
"loc=uk;lang=cy".

When a connection is requested with a given tag, and a connection with that tag
is not present in the pool, then a new connection, or an existing connection
with cleaned session state, will be chosen by the pool and the session callback
procedure will be invoked. The callback can then set desired session state and
update the connection’s tag. However if the matchanytag parameter of
acquire() is True, then any other tagged connection may
be chosen by the pool and the callback procedure should parse the actual and
requested tags to determine which bits of session state should be reset.

The example below demonstrates connection tagging:

def initSession(connection, requestedTag):
 if requestedTag == "NLS_DATE_FORMAT=SIMPLE":
 sql = "ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD'"
 elif requestedTag == "NLS_DATE_FORMAT=FULL":
 sql = "ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI'"
 cursor = connection.cursor()
 cursor.execute(sql)
 connection.tag = requestedTag

pool = cx_Oracle.SessionPool("hr", userpwd, "orclpdb1",
 sessionCallback=initSession, encoding="UTF-8")

Two connections with different session state:
connection1 = pool.acquire(tag = "NLS_DATE_FORMAT=SIMPLE")
connection2 = pool.acquire(tag = "NLS_DATE_FORMAT=FULL")

See SessionCallback.py [https://github.com/oracle/python-cx_Oracle/tree/master/samples/SessionCallback.py] for an example.

PL/SQL Callback

When cx_Oracle uses Oracle Client 12.2 or later, the session callback can also
be the name of a PL/SQL procedure. A PL/SQL callback will be initiated only
when the tag currently associated with a connection does not match the tag that
is requested. A PL/SQL callback is most useful when using Database Resident Connection Pooling (DRCP) because
DRCP does not require a round-trip to invoke a PL/SQL session callback
procedure.

The PL/SQL session callback should accept two VARCHAR2 arguments:

PROCEDURE myPlsqlCallback (
 requestedTag IN VARCHAR2,
 actualTag IN VARCHAR2
);

The logic in this procedure can parse the actual tag in the session that has
been selected by the pool and compare it with the tag requested by the
application. The procedure can then change any state required before the
connection is returned to the application from acquire().

If the matchanytag attribute of acquire() is True,
then a connection with any state may be chosen by the pool.

Oracle ‘multi-property tags’ must be used. The tag string must be of the form
of one or more “name=value” pairs separated by a semi-colon, for example
"loc=uk;lang=cy".

In cx_Oracle set sessionCallback to the name of the PL/SQL procedure. For
example:

pool = cx_Oracle.SessionPool("hr", userpwd, "dbhost.example.com/orclpdb1:pooled",
 sessionCallback="myPlsqlCallback", encoding="UTF-8")

connection = pool.acquire(tag="NLS_DATE_FORMAT=SIMPLE",
 # DRCP options, if you are using DRCP
 cclass='MYCLASS', purity=cx_Oracle.ATTR_PURITY_SELF)

See SessionCallbackPLSQL.py [https://github.com/oracle/python-cx_Oracle/tree/master/samples/SessionCallbackPLSQL.py] for an example.

Heterogeneous and Homogeneous Connection Pools

By default, connection pools are ‘homogeneous’, meaning that all connections
use the same database credentials. However, if the pool option homogeneous
is False at the time of pool creation, then a ‘heterogeneous’ pool will be
created. This allows different credentials to be used each time a connection
is acquired from the pool with acquire().

Heterogeneous Pools

When a heterogeneous pool is created by setting homogeneous to False and no
credentials are supplied during pool creation, then a user name and password
may be passed to acquire() as shown in this example:

pool = cx_Oracle.SessionPool(dsn="dbhost.example.com/orclpdb1", homogeneous=False,
 encoding="UTF-8")
connection = pool.acquire(user="hr", password=userpwd)

Database Resident Connection Pooling (DRCP)

Database Resident Connection Pooling (DRCP) [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-015CA8C1-2386-4626-855D-CC546DDC1086] enables database resource
sharing for applications that run in multiple client processes, or run on
multiple middle-tier application servers. By default each connection from
Python will use one database server process. DRCP allows pooling of these
server processes. This reduces the amount of memory required on the database
host. The DRCP pool can be shared by multiple applications.

DRCP is useful for applications which share the same database credentials, have
similar session settings (for example date format settings or PL/SQL package
state), and where the application gets a database connection, works on it for a
relatively short duration, and then releases it.

Applications can choose whether or not to use pooled connections at runtime.

For efficiency, it is recommended that DRCP connections should be used
in conjunction with cx_Oracle’s local connection pool.

Using DRCP in Python

Using DRCP with cx_Oracle applications involves the following steps:

	Configuring and enabling DRCP in the database

	Configuring the application to use a DRCP connection

	Deploying the application

Configuring and enabling DRCP

Every instance of Oracle Database uses a single, default connection
pool. The pool can be configured and administered by a DBA using the
DBMS_CONNECTION_POOL package:

EXECUTE DBMS_CONNECTION_POOL.CONFIGURE_POOL(
 pool_name => 'SYS_DEFAULT_CONNECTION_POOL',
 minsize => 4,
 maxsize => 40,
 incrsize => 2,
 session_cached_cursors => 20,
 inactivity_timeout => 300,
 max_think_time => 600,
 max_use_session => 500000,
 max_lifetime_session => 86400)

Alternatively the method DBMS_CONNECTION_POOL.ALTER_PARAM() can
set a single parameter:

EXECUTE DBMS_CONNECTION_POOL.ALTER_PARAM(
 pool_name => 'SYS_DEFAULT_CONNECTION_POOL',
 param_name => 'MAX_THINK_TIME',
 param_value => '1200')

The inactivity_timeout setting terminates idle pooled servers, helping
optimize database resources. To avoid pooled servers permanently being held
onto by a selfish Python script, the max_think_time parameter can be set.
The parameters num_cbrok and maxconn_cbrok can be used to distribute
the persistent connections from the clients across multiple brokers. This may
be needed in cases where the operating system per-process descriptor limit is
small. Some customers have found that having several connection brokers
improves performance. The max_use_session and max_lifetime_session
parameters help protect against any unforeseen problems affecting server
processes. The default values will be suitable for most users. See the
Oracle DRCP documentation [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-015CA8C1-2386-4626-855D-CC546DDC1086] for details on parameters.

In general, if pool parameters are changed, the pool should be restarted,
otherwise server processes will continue to use old settings.

There is a DBMS_CONNECTION_POOL.RESTORE_DEFAULTS() procedure to
reset all values.

When DRCP is used with RAC, each database instance has its own connection
broker and pool of servers. Each pool has the identical configuration. For
example, all pools start with minsize server processes. A single
DBMS_CONNECTION_POOL command will alter the pool of each instance at the same
time. The pool needs to be started before connection requests begin. The
command below does this by bringing up the broker, which registers itself with
the database listener:

EXECUTE DBMS_CONNECTION_POOL.START_POOL()

Once enabled this way, the pool automatically restarts when the database
instance restarts, unless explicitly stopped with the
DBMS_CONNECTION_POOL.STOP_POOL() command:

EXECUTE DBMS_CONNECTION_POOL.STOP_POOL()

The pool cannot be stopped while connections are open.

Application Deployment for DRCP

In order to use DRCP, the cclass and purity parameters should
be passed to cx_Oracle.connect() or SessionPool.acquire(). If
cclass is not set, the pooled server sessions will not be reused optimally,
and the DRCP statistic views will record large values for NUM_MISSES.

The DRCP purity can be one of ATTR_PURITY_NEW, ATTR_PURITY_SELF,
or ATTR_PURITY_DEFAULT. The value ATTR_PURITY_SELF allows reuse of
both the pooled server process and session memory, giving maximum benefit from
DRCP. See the Oracle documentation on benefiting from scalability [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-661BB906-74D2-4C5D-9C7E-2798F76501B3].

The connection string used for connect() or
acquire() must request a pooled server by
following one of the syntaxes shown below:

Using Oracle’s Easy Connect syntax, the connection would look like:

connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com/orcl:pooled",
 encoding="UTF-8")

Or if you connect using a Net Service Name named customerpool:

connection = cx_Oracle.connect("hr", userpwd, "customerpool", encoding="UTF-8")

Then only the Oracle Network configuration file tnsnames.ora needs
to be modified:

customerpool = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
 (HOST=dbhost.example.com)
 (PORT=1521))(CONNECT_DATA=(SERVICE_NAME=CUSTOMER)
 (SERVER=POOLED)))

If these changes are made and the database is not actually configured for DRCP,
or the pool is not started, then connections will not succeed and an error will
be returned to the Python application.

Although applications can choose whether or not to use pooled connections at
runtime, care must be taken to configure the database appropriately for the
number of expected connections, and also to stop inadvertent use of non-DRCP
connections leading to a resource shortage.

The example below shows how to connect to Oracle Database using Database
Resident Connection Pooling:

connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com/orcl:pooled",
 cclass="MYCLASS", purity=cx_Oracle.ATTR_PURITY_SELF, encoding="UTF-8")

The example below shows connecting to Oracle Database using DRCP and
cx_Oracle’s connection pooling:

mypool = cx_Oracle.SessionPool("hr", userpwd, "dbhost.example.com/orcl:pooled",
 encoding="UTF-8")
connection = mypool.acquire(cclass="MYCLASS", purity=cx_Oracle.ATTR_PURITY_SELF)

For more information about DRCP see Oracle Database Concepts Guide [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-531EEE8A-B00A-4C03-A2ED-D45D92B3F797], and for DRCP Configuration
see Oracle Database Administrator’s Guide [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-82FF6896-F57E-41CF-89F7-755F3BC9C924].

Closing Connections

Python scripts where cx_Oracle connections do not go out of scope quickly
(which releases them), or do not currently use Connection.close(),
should be examined to see if close() can be used, which
then allows maximum use of DRCP pooled servers by the database:

 # Do some database operations
connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com/orclpdb1:pooled",
 encoding="UTF-8")
. . .
connection.close();

Do lots of non-database work
. . .

Do some more database operations
connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com/orclpdb1:pooled",
 encoding="UTF-8")
. . .
connection.close();

Monitoring DRCP

Data dictionary views are available to monitor the performance of DRCP.
Database administrators can check statistics such as the number of busy and
free servers, and the number of hits and misses in the pool against the total
number of requests from clients. The views are:

	DBA_CPOOL_INFO

	V$PROCESS

	V$SESSION

	V$CPOOL_STATS

	V$CPOOL_CC_STATS

	V$CPOOL_CONN_INFO

DBA_CPOOL_INFO View

DBA_CPOOL_INFO displays configuration information about the DRCP pool. The
columns are equivalent to the dbms_connection_pool.configure_pool()
settings described in the table of DRCP configuration options, with the
addition of a STATUS column. The status is ACTIVE if the pool has been
started and INACTIVE otherwise. Note the pool name column is called
CONNECTION_POOL. This example checks whether the pool has been started and
finds the maximum number of pooled servers:

SQL> SELECT connection_pool, status, maxsize FROM dba_cpool_info;

CONNECTION_POOL STATUS MAXSIZE
---------------------------- ---------- ----------
SYS_DEFAULT_CONNECTION_POOL ACTIVE 40

V$PROCESS and V$SESSION Views

The V$SESSION view shows information about the currently active DRCP
sessions. It can also be joined with V$PROCESS via
V$SESSION.PADDR = V$PROCESS.ADDR to correlate the views.

V$CPOOL_STATS View

The V$CPOOL_STATS view displays information about the DRCP statistics for
an instance. The V$CPOOL_STATS view can be used to assess how efficient the
pool settings are. T his example query shows an application using the pool
effectively. The low number of misses indicates that servers and sessions were
reused. The wait count shows just over 1% of requests had to wait for a pooled
server to become available:

NUM_REQUESTS NUM_HITS NUM_MISSES NUM_WAITS
------------ ---------- ---------- ----------
 10031 99990 40 1055

If cclass was set (allowing pooled servers and sessions to be
reused) then NUM_MISSES will be low. If the pool maxsize is too small for
the connection load, then NUM_WAITS will be high.

V$CPOOL_CC_STATS View

The view V$CPOOL_CC_STATS displays information about the connection class
level statistics for the pool per instance:

SQL> SELECT cclass_name, num_requests, num_hits, num_misses
 FROM v$cpool_cc_stats;

CCLASS_NAME NUM_REQUESTS NUM_HITS NUM_MISSES
-------------------------------- ------------ ---------- ----------
HR.MYCLASS 100031 99993 38

V$CPOOL_CONN_INFO View

The V$POOL_CONN_INFO view gives insight into client processes that are
connected to the connection broker, making it easier to monitor and trace
applications that are currently using pooled servers or are idle. This view was
introduced in Oracle 11gR2.

You can monitor the view V$CPOOL_CONN_INFO to, for example, identify
misconfigured machines that do not have the connection class set correctly.
This view maps the machine name to the class name:

SQL> SELECT cclass_name, machine FROM v$cpool_conn_info;

CCLASS_NAME MACHINE
--------------------------------------- ------------
CJ.OCI:SP:wshbIFDtb7rgQwMyuYvodA cjlinux
. . .

In this example you would examine applications on cjlinux and make
sure cclass is set.

Connecting Using Proxy Authentication

Proxy authentication allows a user (the “session user”) to connect to Oracle
Database using the credentials of a ‘proxy user’. Statements will run as the
session user. Proxy authentication is generally used in three-tier applications
where one user owns the schema while multiple end-users access the data. For
more information about proxy authentication, see the Oracle documentation [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-D77D0D4A-7483-423A-9767-CBB5854A15CC].

An alternative to using proxy users is to set
Connection.client_identifier after connecting and use its value in
statements and in the database, for example for monitoring.

The following proxy examples use these schemas. The mysessionuser schema is
granted access to use the password of myproxyuser:

CREATE USER myproxyuser IDENTIFIED BY myproxyuserpw;
GRANT CREATE SESSION TO myproxyuser;

CREATE USER mysessionuser IDENTIFIED BY itdoesntmatter;
GRANT CREATE SESSION TO mysessionuser;

ALTER USER mysessionuser GRANT CONNECT THROUGH myproxyuser;

After connecting to the database, the following query can be used to show the
session and proxy users:

SELECT SYS_CONTEXT('USERENV', 'PROXY_USER'),
 SYS_CONTEXT('USERENV', 'SESSION_USER')
FROM DUAL;

Standalone connection examples:

Basic Authentication without a proxy
connection = cx_Oracle.connect("myproxyuser", "myproxyuserpw", "dbhost.example.com/orclpdb1",
 encoding="UTF-8")
PROXY_USER: None
SESSION_USER: MYPROXYUSER

Basic Authentication with a proxy
connection = cx_Oracle.connect(user="myproxyuser[mysessionuser]", "myproxyuserpw",
 "dbhost.example.com/orclpdb1", encoding="UTF-8")
PROXY_USER: MYPROXYUSER
SESSION_USER: MYSESSIONUSER

Pooled connection examples:

Basic Authentication without a proxy
pool = cx_Oracle.SessionPool("myproxyuser", "myproxyuser", "dbhost.example.com/orclpdb1",
 encoding="UTF-8")
connection = pool.acquire()
PROXY_USER: None
SESSION_USER: MYPROXYUSER

Basic Authentication with proxy
pool = cx_Oracle.SessionPool("myproxyuser[mysessionuser]", "myproxyuser",
 "dbhost.example.com/orclpdb1", homogeneous=False, encoding="UTF-8")
connection = pool.acquire()
PROXY_USER: MYPROXYUSER
SESSION_USER: MYSESSIONUSER

Note the use of a heterogeneous pool in the example
above. This is required in this scenario.

Connecting Using External Authentication

Instead of storing the database username and password in Python scripts or
environment variables, database access can be authenticated by an outside
system. External Authentication allows applications to validate user access by
an external password store (such as an Oracle Wallet), by the operating system,
or with an external authentication service.

Using an Oracle Wallet for External Authentication

The following steps give an overview of using an Oracle Wallet. Wallets should
be kept securely. Wallets can be managed with Oracle Wallet Manager [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-E3E16C82-E174-4814-98D5-EADF1BCB3C37].

In this example the wallet is created for the myuser schema in the directory
/home/oracle/wallet_dir. The mkstore command is available from a full
Oracle client or Oracle Database installation. If you have been given wallet by
your DBA, skip to step 3.

	First create a new wallet as the oracle user:

mkstore -wrl "/home/oracle/wallet_dir" -create

This will prompt for a new password for the wallet.

	Create the entry for the database user name and password that are currently
hardcoded in your Python scripts. Use either of the methods shown below.
They will prompt for the wallet password that was set in the first step.

Method 1 - Using an Easy Connect string:

mkstore -wrl "/home/oracle/wallet_dir" -createCredential dbhost.example.com/orclpdb1 myuser myuserpw

Method 2 - Using a connect name identifier:

mkstore -wrl "/home/oracle/wallet_dir" -createCredential mynetalias myuser myuserpw

The alias key mynetalias immediately following the
-createCredential option will be the connect name to be used in Python
scripts. If your application connects with multiple different database
users, you could create a wallet entry with different connect names for
each.

You can see the newly created credential with:

mkstore -wrl "/home/oracle/wallet_dir" -listCredential

	Skip this step if the wallet was created using an Easy Connect String.
Otherwise, add an entry in tnsnames.ora for the connect
name as follows:

mynetalias =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbhost.example.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orclpdb1)
)
)

The file uses the description for your existing database and sets the
connect name alias to mynetalias, which is the identifier used when
adding the wallet entry.

	Add the following wallet location entry in the sqlnet.ora file, using the DIRECTORY you created the wallet in:

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /home/oracle/wallet_dir)
)
)
SQLNET.WALLET_OVERRIDE = TRUE

Examine the Oracle documentation for full settings and values.

	Ensure the configuration files are in a default location or set TNS_ADMIN is
set to the directory containing them. See Optional Oracle Net Configuration Files.

With an Oracle wallet configured, and readable by you, your scripts
can connect using:

connection = cx_Oracle.connect(dsn="mynetalias", encoding="UTF-8")

or:

pool = cx_Oracle.SessionPool(externalauth=True, homogeneous=False, dsn="mynetalias",
 encoding="UTF-8")
pool.acquire()

The dsn must match the one used in the wallet.

After connecting, the query:

SELECT SYS_CONTEXT('USERENV', 'SESSION_USER') FROM DUAL;

will show:

MYUSER

Note

Wallets are also used to configure TLS connections. If you are using a
wallet like this, you may need a database username and password in
cx_Oracle.connect() and cx_Oracle.SessionPool() calls.

External Authentication and Proxy Authentication

The following examples show external wallet authentication combined with
proxy authentication. These examples use the wallet
configuration from above, with the addition of a grant to another user:

ALTER USER mysessionuser GRANT CONNECT THROUGH myuser;

After connection, you can check who the session user is with:

SELECT SYS_CONTEXT('USERENV', 'PROXY_USER'),
 SYS_CONTEXT('USERENV', 'SESSION_USER')
FROM DUAL;

Standalone connection example:

External Authentication with proxy
connection = cx_Oracle.connect(user="[mysessionuser]", dsn="mynetalias", encoding="UTF-8")
PROXY_USER: MYUSER
SESSION_USER: MYSESSIONUSER

Pooled connection example:

External Authentication with proxy
pool = cx_Oracle.SessionPool(externalauth=True, homogeneous=False, dsn="mynetalias",
 encoding="UTF-8")
pool.acquire(user="[mysessionuser]")
PROXY_USER: MYUSER
SESSION_USER: MYSESSIONUSER

The following usage is not supported:

pool = cx_Oracle.SessionPool("[mysessionuser]", externalauth=True, homogeneous=False,
 dsn="mynetalias", encoding="UTF-8")
pool.acquire()

Operating System Authentication

With Operating System authentication, Oracle allows user authentication to be
performed by the operating system. The following steps give an overview of how
to implement OS Authentication on Linux.

	Login to your computer. The commands used in these steps assume the
operating system user name is “oracle”.

	Login to SQL*Plus as the SYSTEM user and verify the value for the
OS_AUTHENT_PREFIX parameter:

SQL> SHOW PARAMETER os_authent_prefix

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
os_authent_prefix string ops$

	Create an Oracle database user using the os_authent_prefix determined in
step 2, and the operating system user name:

CREATE USER ops$oracle IDENTIFIED EXTERNALLY;
GRANT CONNECT, RESOURCE TO ops$oracle;

In Python, connect using the following code:

connection = cx_Oracle.connect(dsn="mynetalias", encoding="UTF-8")

Your session user will be OPS$ORACLE.

If your database is not on the same computer as python, you can perform testing
by setting the database configuration parameter remote_os_authent=true.
Beware this is insecure.

See Oracle Database Security Guide [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-37BECE32-58D5-43BF-A098-97936D66968F] for more information about
Operating System Authentication.

Privileged Connections

The mode parameter of the function cx_Oracle.connect() specifies
the database privilege that you want to associate with the user.

The example below shows how to connect to Oracle Database as SYSDBA:

connection = cx_Oracle.connect("sys", syspwd, "dbhost.example.com/orclpdb1",
 mode=cx_Oracle.SYSDBA, encoding="UTF-8")

cursor = con.cursor()
sql = "GRANT SYSOPER TO hr"
cursor.execute(sql)

This is equivalent to executing the following in SQL*Plus:

CONNECT sys/syspwd AS SYSDBA

GRANT SYSOPER TO hr;

Starting and Stopping Oracle Database

cx_Oracle has the capability of starting up the database using a privileged
connection. This example shows a script that could be run as the ‘oracle’
operating system user who administers a local database installation on Linux.
It assumes that the environment variable ORACLE_SID has been set to the SID
of the database that should be started:

the connection must be in PRELIM_AUTH mode to perform startup
connection = cx_Oracle.connect("/",
 mode = cx_Oracle.SYSDBA | cx_Oracle.PRELIM_AUTH)
connection.startup()

the following statements must be issued in normal SYSDBA mode
connection = cx_Oracle.connect("/", mode = cx_Oracle.SYSDBA, encoding="UTF-8")
cursor = connection.cursor()
cursor.execute("alter database mount")
cursor.execute("alter database open")

Similarly, cx_Oracle has the ability to shutdown the database using a
privileged connection. This example also assumes that the environment variable
ORACLE_SID has been set:

need to connect as SYSDBA or SYSOPER
connection = cx_Oracle.connect("/", mode = cx_Oracle.SYSDBA)

first shutdown() call must specify the mode, if DBSHUTDOWN_ABORT is used,
there is no need for any of the other steps
connection.shutdown(mode = cx_Oracle.DBSHUTDOWN_IMMEDIATE)

now close and dismount the database
cursor = connection.cursor()
cursor.execute("alter database close normal")
cursor.execute("alter database dismount")

perform the final shutdown call
connection.shutdown(mode = cx_Oracle.DBSHUTDOWN_FINAL)

Securely Encrypting Network Traffic to Oracle Database

You can encrypt data transferred between the Oracle Database and the Oracle
client libraries used by cx_Oracle so that unauthorized parties are not able to
view plain text values as the data passes over the network. The easiest
configuration is Oracle’s native network encryption. The standard SSL protocol
can also be used if you have a PKI, but setup is necessarily more involved.

With native network encryption, the client and database server negotiate a key
using Diffie-Hellman key exchange. This provides protection against
man-in-the-middle attacks.

Native network encryption can be configured by editing Oracle Net’s optional
sqlnet.ora configuration file, on either the database
server and/or on each cx_Oracle ‘client’ machine. Parameters control whether
data integrity checking and encryption is required or just allowed, and which
algorithms the client and server should consider for use.

As an example, to ensure all connections to the database are checked for
integrity and are also encrypted, create or edit the Oracle Database
$ORACLE_HOME/network/admin/sqlnet.ora file. Set the checksum negotiation
to always validate a checksum and set the checksum type to your desired value.
The network encryption settings can similarly be set. For example, to use the
SHA512 checksum and AES256 encryption use:

SQLNET.CRYPTO_CHECKSUM_SERVER = required
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER = (SHA512)
SQLNET.ENCRYPTION_SERVER = required
SQLNET.ENCRYPTION_TYPES_SERVER = (AES256)

If you definitely know that the database server enforces integrity and
encryption, then you do not need to configure cx_Oracle separately. However
you can also, or alternatively, do so depending on your business needs. Create
a sqlnet.ora on your client machine and locate it with other
Optional Oracle Net Configuration Files:

SQLNET.CRYPTO_CHECKSUM_CLIENT = required
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT = (SHA512)
SQLNET.ENCRYPTION_CLIENT = required
SQLNET.ENCRYPTION_TYPES_CLIENT = (AES256)

The client and server sides can negotiate the protocols used if the settings
indicate more than one value is accepted.

Note that these are example settings only. You must review your security
requirements and read the documentation for your Oracle version. In particular
review the available algorithms for security and performance.

The NETWORK_SERVICE_BANNER column of the database view
V$SESSION_CONNECT_INFO [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-9F0DCAEA-A67E-4183-89E7-B1555DC591CE] can be used to verify the
encryption status of a connection.

For more information on Oracle Data Network Encryption and Integrity,
configuring SSL network encryption and Transparent Data Encryption of
data-at-rest in the database, see Oracle Database Security Guide [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-41040F53-D7A6-48FA-A92A-0C23118BC8A0].

Resetting Passwords

After connecting, passwords can be changed by calling
Connection.changepassword():

Get the passwords from somewhere, such as prompting the user
oldpwd = getpass.getpass("Old Password for %s: " % username)
newpwd = getpass.getpass("New Password for %s: " % username)

connection.changepassword(oldpwd, newpwd)

When a password has expired and you cannot connect directly, you can connect
and change the password in one operation by using the newpassword parameter
of the function cx_Oracle.connect() constructor:

Get the passwords from somewhere, such as prompting the user
oldpwd = getpass.getpass("Old Password for %s: " % username)
newpwd = getpass.getpass("New Password for %s: " % username)

connection = cx_Oracle.connect(username, oldpwd, "dbhost.example.com/orclpdb1",
 newpassword=newpwd, encoding="UTF-8")

Connecting to Sharded Databases

The cx_Oracle.connect() and SessionPool.acquire()
functions accept shardingkey and supershardingkey parameters
that are a sequence of values used to identify the database shard to
connect to. Currently only strings are supported for the key values.
See Oracle Sharding [https://www.oracle.com/database/technologies/high-availability/sharding.html] for more information.

SQL Execution

Executing SQL statements is the primary way in which a Python application
communicates with Oracle Database. Statements are executed using the methods
Cursor.execute() or Cursor.executemany(). Statements include
queries, Data Manipulation Language (DML), and Data Definition Language (DDL).
A few other specialty statements [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-E1749EF5-2264-44DF-99EF-AEBEB943BED6] can also be executed.

PL/SQL statements are discussed in PL/SQL Execution. Other chapters
contain information on specific data types and features. See Batch Statement Execution and Bulk Loading,
Using CLOB and BLOB Data, Working with the JSON Data Type, and Working with XMLTYPE.

cx_Oracle can be used to execute individual statements, one at a time. It does
not read SQL*Plus “.sql” files. To read SQL files, use a technique like the one
in RunSqlScript() in samples/SampleEnv.py [https://github.com/oracle/python-cx_Oracle/blob/master/samples/SampleEnv.py]

SQL statements should not contain a trailing semicolon (“;”) or forward slash
(“/”). This will fail:

cur.execute("select * from MyTable;")

This is correct:

cur.execute("select * from MyTable")

SQL Queries

Queries (statements beginning with SELECT or WITH) can only be executed using
the method Cursor.execute(). Rows can then be iterated over, or can be
fetched using one of the methods Cursor.fetchone(),
Cursor.fetchmany() or Cursor.fetchall(). There is a
default type mapping to Python types that can be
optionally overridden.

Important

Interpolating or concatenating user data with SQL statements, for example
cur.execute("SELECT * FROM mytab WHERE mycol = '" + myvar + "'"), is a security risk
and impacts performance. Use bind variables instead. For
example, cur.execute("SELECT * FROM mytab WHERE mycol = :mybv", mybv=myvar).

Fetch Methods

After Cursor.execute(), the cursor is returned as a convenience. This
allows code to iterate over rows like:

cur = connection.cursor()
for row in cur.execute("select * from MyTable"):
 print(row)

Rows can also be fetched one at a time using the method
Cursor.fetchone():

cur = connection.cursor()
cur.execute("select * from MyTable")
while True:
 row = cur.fetchone()
 if row is None:
 break
 print(row)

If rows need to be processed in batches, the method Cursor.fetchmany()
can be used. The size of the batch is controlled by the numRows parameter,
which defaults to the value of Cursor.arraysize.

cur = connection.cursor()
cur.execute("select * from MyTable")
numRows = 10
while True:
 rows = cur.fetchmany(numRows)
 if not rows:
 break
 for row in rows:
 print(row)

If all of the rows need to be fetched, and can be contained in memory, the
method Cursor.fetchall() can be used.

cur = connection.cursor()
cur.execute("select * from MyTable")
rows = cur.fetchall()
for row in rows:
 print(row)

Closing Cursors

A cursor may be used to execute multiple statements. Once it is no longer
needed, it should be closed by calling close() in order to
reclaim resources in the database. It will be closed automatically when the
variable referencing it goes out of scope (and no further references are
retained). One other way to control the lifetime of a cursor is to use a “with”
block, which ensures that a cursor is closed once the block is completed. For
example:

with connection.cursor() as cursor:
 for row in cursor.execute("select * from MyTable"):
 print(row)

This code ensures that, once the block is completed, the cursor is closed and
resources have been reclaimed by the database. In addition, any attempt to use
the variable cursor outside of the block will simply fail.

Tuning Fetch Performance

For best performance, the cx_Oracle Cursor.arraysize value should be set
before calling Cursor.execute(). The default value is 100. For queries
that return a large number of rows, increasing arraysize can improve
performance because it reduces the number of round-trips to the database.
However increasing this value increases the amount of memory required. The best
value for your system depends on factors like your network speed, the query row
size, and available memory. An appropriate value can be found by experimenting
with your application.

Regardless of which fetch method is used to get rows, internally all rows are
fetched in batches corresponding to the value of arraysize. The size does
not affect how, or when, rows are returned to your application (other than being
used as the default size for Cursor.fetchmany()). It does not limit the
minimum or maximum number of rows returned by a query.

Along with tuning arraysize, make sure your SQL statements are optimal [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=TGSQL] and avoid
selecting columns that are not required by the application. For queries that do
not need to fetch all data, use a row limiting clause to
reduce the number of rows processed by the database.

An example of setting arraysize is:

cur = connection.cursor()
cur.arraysize = 500
for row in cur.execute("select * from MyTable"):
 print(row)

One place where increasing arraysize is particularly useful is in copying
data from one database to another:

setup cursors
sourceCursor = sourceConnection.cursor()
sourceCursor.arraysize = 1000
targetCursor = targetConnection.cursor()
targetCursor.arraysize = 1000

perform fetch and bulk insertion
sourceCursor.execute("select * from MyTable")
while True:
 rows = sourceCursor.fetchmany()
 if not rows:
 break
 targetCursor.executemany("insert into MyTable values (:1, :2)", rows)
 targetConnection.commit()

If you know that a query returns a small number of rows then you should reduce
the value of arraysize. For example if you are fetching only one row, then
set arraysize to 1:

cur = connection.cursor()
cur.arraysize = 1
cur.execute("select * from MyTable where id = 1"):
row = cur.fetchone()
print(row)

In cx_Oracle, the arraysize value is only examined when a statement is
executed the first time. To change the arraysize for a repeated statement,
create a new cursor:

array_sizes = (10, 100, 1000)
for size in array_sizes:
 cursor = connection.cursor()
 cursor.arraysize = size
 start = time.time()
 cursor.execute(sql).fetchall()
 elapsed = time.time() - start
 print("Time for", size, elapsed, "seconds")

Query Column Metadata

After executing a query, the column metadata such as column names and data types
can be obtained using Cursor.description:

cur = connection.cursor()
cur.execute("select * from MyTable")
for column in cur.description:
 print(column)

This could result in metadata like:

('ID', <class 'cx_Oracle.NUMBER'>, 39, None, 38, 0, 0)
('NAME', <class 'cx_Oracle.STRING'>, 20, 20, None, None, 1)

Fetch Data Types

The following table provides a list of all of the data types that cx_Oracle
knows how to fetch. The middle column gives the type that is returned in the
query metadata. The last column gives the type of Python
object that is returned by default. Python types can be changed with
Output Type Handlers.

	Oracle Database Type

	cx_Oracle Type

	Default Python type

	BFILE

	cx_Oracle.BFILE

	cx_Oracle.LOB

	BINARY_DOUBLE

	cx_Oracle.NATIVE_FLOAT

	float

	BINARY_FLOAT

	cx_Oracle.NATIVE_FLOAT

	float

	BLOB

	cx_Oracle.BLOB

	cx_Oracle.LOB

	CHAR

	cx_Oracle.FIXED_CHAR

	str

	CLOB

	cx_Oracle.CLOB

	cx_Oracle.LOB

	CURSOR

	cx_Oracle.CURSOR

	cx_Oracle.Cursor

	DATE

	cx_Oracle.DATETIME

	datetime.datetime

	INTERVAL DAY TO SECOND

	cx_Oracle.INTERVAL

	datetime.timedelta

	LONG

	cx_Oracle.LONG_STRING

	str

	LONG RAW

	cx_Oracle.LONG_BINARY

	bytes 4

	NCHAR

	cx_Oracle.FIXED_NCHAR

	str 1

	NCLOB

	cx_Oracle.NCLOB

	cx_Oracle.LOB

	NUMBER

	cx_Oracle.NUMBER

	float or int 2

	NVARCHAR2

	cx_Oracle.NCHAR

	str 1

	OBJECT 5

	cx_Oracle.OBJECT

	cx_Oracle.Object

	RAW

	cx_Oracle.BINARY

	bytes 4

	ROWID

	cx_Oracle.ROWID

	str

	TIMESTAMP

	cx_Oracle.TIMESTAMP

	datetime.datetime

	TIMESTAMP WITH LOCAL TIME ZONE

	cx_Oracle.TIMESTAMP

	datetime.datetime 3

	TIMESTAMP WITH TIME ZONE

	cx_Oracle.TIMESTAMP

	datetime.datetime 3

	UROWID

	cx_Oracle.ROWID

	str

	VARCHAR2

	cx_Oracle.STRING

	str

	1(1,2)

	In Python 2 these are fetched as unicode objects.

	2

	If the precision and scale obtained from query column metadata indicate
that the value can be expressed as an integer, the value will be
returned as an int. If the column is unconstrained (no precision and
scale specified), the value will be returned as a float or an int
depending on whether the value itself is an integer. In all other cases
the value is returned as a float. Note that in Python 2, values returned
as integers will be int or long depending on the size of the integer.

	3(1,2)

	The timestamps returned are naive timestamps without any time zone
information present.

	4(1,2)

	In Python 2 these are identical to str objects since Python 2 doesn’t
have a native bytes object.

	5

	These include all user-defined types such as VARRAY, NESTED TABLE, etc.

Changing Fetched Data Types with Output Type Handlers

Sometimes the default conversion from an Oracle Database type to a Python type
must be changed in order to prevent data loss or to fit the purposes of the
Python application. In such cases, an output type handler can be specified for
queries. Output type handlers do not affect values returned from
Cursor.callfunc() or Cursor.callproc().

Output type handlers can be specified on the connection or on the cursor. If specified on the cursor, fetch type handling is
only changed on that particular cursor. If specified on the connection, all
cursors created by that connection will have their fetch type handling changed.

The output type handler is expected to be a function with the following
signature:

handler(cursor, name, defaultType, size, precision, scale)

The parameters are the same information as the query column metadata found in
Cursor.description. The function is called once for each column that is
going to be fetched. The function is expected to return a
variable object (generally by a call to Cursor.var())
or the value None. The value None indicates that the default type
should be used.

Examples of output handlers are shown in Fetched Number Precision and
Fetching LOBs as Strings and Bytes.

Fetched Number Precision

One reason for using an output type handler is to ensure that numeric precision
is not lost when fetching certain numbers. Oracle Database uses decimal numbers
and these cannot be converted seamlessly to binary number representations like
Python floats. In addition, the range of Oracle numbers exceeds that of
floating point numbers. Python has decimal objects which do not have these
limitations and cx_Oracle knows how to perform the conversion between Oracle
numbers and Python decimal values if directed to do so.

The following code sample demonstrates the issue:

cur = connection.cursor()
cur.execute("create table test_float (X number(5, 3))")
cur.execute("insert into test_float values (7.1)")
connection.commit()
cur.execute("select * from test_float")
val, = cur.fetchone()
print(val, "* 3 =", val * 3)

This displays 7.1 * 3 = 21.299999999999997

Using Python decimal objects, however, there is no loss of precision:

import decimal

def NumberToDecimal(cursor, name, defaultType, size, precision, scale):
 if defaultType == cx_Oracle.NUMBER:
 return cursor.var(decimal.Decimal, arraysize=cursor.arraysize)

cur = connection.cursor()
cur.outputtypehandler = NumberToDecimal
cur.execute("select * from test_float")
val, = cur.fetchone()
print(val, "* 3 =", val * 3)

This displays 7.1 * 3 = 21.3

The Python decimal.Decimal converter gets called with the string
representation of the Oracle number. The output from decimal.Decimal is
returned in the output tuple.

Changing Query Results with Outconverters

cx_Oracle “outconverters” can be used with output type handlers to change returned data.

For example, to make queries return empty strings instead of NULLs:

def OutConverter(value):
 if value is None:
 return ''
 return value

def OutputTypeHandler(cursor, name, defaultType, size, precision, scale):
 if defaultType in (cx_Oracle.STRING, cx_Oracle.FIXED_CHAR):
 return cursor.var(str, size, cur.arraysize, outconverter=OutConverter)

connection.outputtypehandler = OutputTypeHandler

Scrollable Cursors

Scrollable cursors enable applications to move backwards, forwards, to skip
rows, and to move to a particular row in a query result set. The result set is
cached on the database server until the cursor is closed. In contrast, regular
cursors are restricted to moving forward.

A scrollable cursor is created by setting the parameter scrollable=True
when creating the cursor. The method Cursor.scroll() is used to move to
different locations in the result set.

Examples are:

cursor = connection.cursor(scrollable=True)
cursor.execute("select * from ChildTable order by ChildId")

cursor.scroll(mode="last")
print("LAST ROW:", cursor.fetchone())

cursor.scroll(mode="first")
print("FIRST ROW:", cursor.fetchone())

cursor.scroll(8, mode="absolute")
print("ROW 8:", cursor.fetchone())

cursor.scroll(6)
print("SKIP 6 ROWS:", cursor.fetchone())

cursor.scroll(-4)
print("SKIP BACK 4 ROWS:", cursor.fetchone())

Limiting Rows

Query data is commonly broken into one or more sets:

	To give an upper bound on the number of rows that a query has to process,
which can help improve database scalability.

	To perform ‘Web pagination’ that allows moving from one set of rows to a
next, or previous, set on demand.

	For fetching of all data in consecutive small sets for batch processing.
This happens because the number of records is too large for Python to handle
at one time.

The latter can be handled by calling Cursor.fetchmany() with one
execution of the SQL query.

‘Web pagination’ and limiting the maximum number of rows are discussed in this
section. For each ‘page’ of results, a SQL query is executed to get the
appropriate set of rows from a table. Since the query may be executed more
than once, make sure to use bind variables for row numbers and
row limits.

Oracle Database 12c SQL introduced an OFFSET / FETCH clause which is
similar to the LIMIT keyword of MySQL. In Python you can fetch a set of
rows using:

myoffset = 0 // do not skip any rows (start at row 1)
mymaxnumrows = 20 // get 20 rows

sql =
 """SELECT last_name
 FROM employees
 ORDER BY last_name
 OFFSET :offset ROWS FETCH NEXT :maxnumrows ROWS ONLY"""

cur = connection.cursor()
for row in cur.execute(sql, offset=myoffset, maxnumrows=mymaxnumrows):
 print(row)

In applications where the SQL query is not known in advance, this method
sometimes involves appending the OFFSET clause to the ‘real’ user query. Be
very careful to avoid SQL injection security issues.

For Oracle Database 11g and earlier there are several alternative ways
to limit the number of rows returned. The old, canonical paging query
is:

SELECT *
FROM (SELECT a.*, ROWNUM AS rnum
 FROM (YOUR_QUERY_GOES_HERE -- including the order by) a
 WHERE ROWNUM <= MAX_ROW)
WHERE rnum >= MIN_ROW

Here, MIN_ROW is the row number of first row and MAX_ROW is the row
number of the last row to return. For example:

SELECT *
FROM (SELECT a.*, ROWNUM AS rnum
 FROM (SELECT last_name FROM employees ORDER BY last_name) a
 WHERE ROWNUM <= 20)
WHERE rnum >= 1

This always has an ‘extra’ column, here called RNUM.

An alternative and preferred query syntax for Oracle Database 11g uses the
analytic ROW_NUMBER() function. For example to get the 1st to 20th names the
query is:

SELECT last_name FROM
(SELECT last_name,
 ROW_NUMBER() OVER (ORDER BY last_name) AS myr
 FROM employees)
WHERE myr BETWEEN 1 and 20

Make sure to use bind variables for the upper and lower limit
values.

Querying Corrupt Data

If queries fail with the error “codec can’t decode byte” when you select data,
then:

	Check your character set is correct. Review the
client and database character sets. Consider using
UTF-8, if this is appropriate:

connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com/orclpdb1",
 encoding="UTF-8", nencoding="UTF-8")

	Check for corrupt data in the database.

If data really is corrupt, you can pass options to the internal decode() [https://docs.python.org/3/library/stdtypes.html#bytes.decode] used by
cx_Oracle to allow it to be selected and prevent the whole query failing. Do
this by creating an outputtypehandler and setting
encodingErrors. For example to replace corrupt characters in character
columns:

def OutputTypeHandler(cursor, name, defaultType, size, precision, scale):
 if defaultType == cx_Oracle.STRING:
 return cursor.var(defaultType, size, arraysize=cursor.arraysize,
 encodingErrors="replace")

cursor.outputtypehandler = OutputTypeHandler

cursor.execute("select column1, column2 from SomeTableWithBadData")

Other codec behaviors can be chosen for encodingErrors, see Error Handlers [https://docs.python.org/3/library/codecs.html#error-handlers].

INSERT and UPDATE Statements

SQL Data Manipulation Language statements (DML) such as INSERT and UPDATE can
easily be executed with cx_Oracle. For example:

cur = connection.cursor()
cur.execute("insert into MyTable values (:idbv, :nmbv)", [1, "Fredico"])

Do not concatenate or interpolate user data into SQL statements. See
Using Bind Variables instead.

See Transaction Management for best practices on committing and rolling back data
changes.

When handling multiple data values, use executemany() for
performance. See Batch Statement Execution and Bulk Loading

Inserting NULLs

Oracle requires a type, even for null values. When you pass the value None, then
cx_Oracle assumes the type is STRING. If this is not the desired type, you can
explicitly set it. For example, to insert a null Oracle Spatial
SDO_GEOMETRY object:

typeObj = connection.gettype("SDO_GEOMETRY")
cur = connection.cursor()
cur.setinputsizes(typeObj)
cur.execute("insert into sometable values (:1)", [None])

PL/SQL Execution

PL/SQL stored procedures, functions and anonymous blocks can be called from
cx_Oracle.

PL/SQL Stored Procedures

The Cursor.callproc() method is used to call PL/SQL procedures.

If a procedure with the following definition exists:

create or replace procedure myproc (
 a_Value1 number,
 a_Value2 out number
) as
begin
 a_Value2 := a_Value1 * 2;
end;

then the following Python code can be used to call it:

outVal = cursor.var(int)
cursor.callproc('myproc', [123, outVal])
print(outVal.getvalue()) # will print 246

Calling Cursor.callproc() actually generates an anonymous PL/SQL block
as shown below, which is then executed:

cursor.execute("begin myproc(:1,:2); end;", [123, outval])

See Using Bind Variables for information on binding.

PL/SQL Stored Functions

The Cursor.callfunc() method is used to call PL/SQL functions.

The returnType parameter for callfunc() is
expected to be a Python type, one of the cx_Oracle types or
an Object Type.

If a function with the following definition exists:

create or replace function myfunc (
 a_StrVal varchar2,
 a_NumVal number
) return number as
begin
 return length(a_StrVal) + a_NumVal * 2;
end;

then the following Python code can be used to call it:

returnVal = cursor.callfunc("myfunc", int, ["a string", 15])
print(returnVal) # will print 38

A more complex example that returns a spatial (SDO) object can be seen below.
First, the SQL statements necessary to set up the example:

create table MyPoints (
 id number(9) not null,
 point sdo_point_type not null
);

insert into MyPoints values (1, sdo_point_type(125, 375, 0));

create or replace function spatial_queryfn (
 a_Id number
) return sdo_point_type is
 t_Result sdo_point_type;
begin
 select point
 into t_Result
 from MyPoints
 where Id = a_Id;

 return t_Result;
end;
/

The Python code that will call this procedure looks as follows:

objType = connection.gettype("SDO_POINT_TYPE")
cursor = connection.cursor()
returnVal = cursor.callfunc("spatial_queryfn", objType, [1])
print("(%d, %d, %d)" % (returnVal.X, returnVal.Y, returnVal.Z))
will print (125, 375, 0)

See Using Bind Variables for information on binding.

Anonymous PL/SQL Blocks

An anonymous PL/SQL block can be called as shown:

var = cursor.var(int)
cursor.execute("""
 begin
 :outVal := length(:inVal);
 end;""", inVal="A sample string", outVal=var)
print(var.getvalue()) # will print 15

See Using Bind Variables for information on binding.

Using DBMS_OUTPUT

The standard way to print output from PL/SQL is using the package
DBMS_OUTPUT [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-C1400094-18D5-4F36-A2C9-D28B0E12FD8C]. In order to use this package
from Python use the following steps:

	Call the PL/SQL procedure DBMS_OUTPUT.ENABLE() to enable output to be
buffered for the connection.

	Execute some PL/SQL procedure that puts text in the buffer by calling
DBMS_OUTPUT.PUT_LINE().

	Call DBMS_OUTPUT.GET_LINE() repeatedly to fetch the text from the buffer
until the status returned is non-zero.

For example:

enable DBMS_OUTPUT
cursor.callproc("dbms_output.enable")

execute some PL/SQL that calls DBMS_OUTPUT.PUT_LINE
cursor.execute("""
 begin
 dbms_output.put_line('This is the cx_Oracle manual');
 dbms_output.put_line('Demonstrating use of DBMS_OUTPUT');
 end;""")

perform loop to fetch the text that was added by PL/SQL
textVar = cursor.var(str)
statusVar = cursor.var(int)
while True:
 cursor.callproc("dbms_output.get_line", (textVar, statusVar))
 if statusVar.getvalue() != 0:
 break
 print(textVar.getvalue())

This will produce the following output:

This is the cx_Oracle manual
Demonstrating use of DBMS_OUTPUT

Implicit results

Implicit results permit a Python program to consume cursors returned by a
PL/SQL block without the requirement to use OUT REF CURSOR parameters. The
method Cursor.getimplicitresults() can be used for this purpose. It
requires both the Oracle Client and Oracle Database to be 12.1 or higher.

An example using implicit results is as shown:

cursor.execute("""
 declare
 cust_cur sys_refcursor;
 sales_cur sys_refcursor;
 begin
 open cust_cur for SELECT * FROM cust_table;
 dbms_sql.return_result(cust_cur);

 open sales_cur for SELECT * FROM sales_table;
 dbms_sql.return_result(sales_cur);
 end;""")

for implicitCursor in cursor.getimplicitresults():
 for row in implicitCursor:
 print(row)

Data from both the result sets are returned:

(1, 'Tom')
(2, 'Julia')
(1000, 1, 'BOOKS')
(2000, 2, 'FURNITURE')

Edition-Based Redefinition (EBR)

Oracle Database’s Edition-Based Redefinition [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-58DE05A0-5DEF-4791-8FA8-F04D11964906] feature enables upgrading of
the database component of an application while it is in use, thereby minimizing
or eliminating down time. This feature allows multiple versions of views,
synonyms, PL/SQL objects and SQL Translation profiles to be used concurrently.
Different versions of the database objects are associated with an “edition”.

The simplest way to set an edition is to pass the edition parameter to
cx_Oracle.connect() or cx_Oracle.SessionPool():

connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com/orclpdb1",
 edition="newsales", encoding="UTF-8")

The edition could also be set by setting the environment variable
ORA_EDITION or by executing the SQL statement:

alter session set edition = <edition name>;

Regardless of which method is used to set the edition, the value that is in use
can be seen by examining the attribute Connection.edition. If no value
has been set, the value will be None. This corresponds to the database default
edition ORA$BASE.

Consider an example where one version of a PL/SQL function Discount is
defined in the database default edition ORA$BASE and the other version of
the same function is defined in a user created edition DEMO.

connect <username>/<password>

-- create function using the database default edition
CREATE OR REPLACE FUNCTION Discount(price IN NUMBER) RETURN NUMBER IS
BEGIN
 return price * 0.9;
END;
/

A new edition named ‘DEMO’ is created and the user given permission to use
editions. The use of FORCE is required if the user already contains one or
more objects whose type is editionable and that also have non-editioned
dependent objects.

connect system/<password>

CREATE EDITION demo;
ALTER USER <username> ENABLE EDITIONS FORCE;
GRANT USE ON EDITION demo to <username>;

The Discount function for the demo edition is as follows:

connect <username>/<password>

alter session set edition = demo;

-- Function for the demo edition
CREATE OR REPLACE FUNCTION Discount(price IN NUMBER) RETURN NUMBER IS
BEGIN
 return price * 0.5;
END;
/

The Python application can then call the required version of the PL/SQL
function as shown:

connection = cx_Oracle.connect(<username>, <password>, "dbhost.example.com/orclpdb1",
 encoding="UTF-8")
print("Edition is:", repr(connection.edition))

cursor = connection.cursor()
discountedPrice = cursor.callfunc("Discount", int, [100])
print("Price after discount is:", discountedPrice)

Use the edition parameter for the connection
connection = cx_Oracle.connect(<username>, <password>, "dbhost.example.com/orclpdb1",
 edition = "demo", encoding="UTF-8")
print("Edition is:", repr(connection.edition))

cursor = connection.cursor()
discountedPrice = cursor.callfunc("Discount", int, [100])
print("Price after discount is:", discountedPrice)

The output of the function call for the default and demo edition is as shown:

Edition is: None
Price after discount is: 90
Edition is: 'DEMO'
Price after discount is: 50

Using Bind Variables

SQL and PL/SQL statements that pass data to and from Oracle Database should use
placeholders in SQL and PL/SQL statements that mark where data is supplied or
returned. These placeholders are referred to as bind variables or bind
parameters A bind variable is a colon-prefixed identifier or numeral. For
example, there are two bind variables (dept_id and dept_name) in this
SQL statement:

sql = """insert into departments (department_id, department_name)
 values (:dept_id, :dept_name)"""
cursor.execute(sql, [280, "Facility"])

Using bind variables is important for scalability and security. They help avoid
SQL Injection security problems because data is never treated as part of an
executable statement. Never concatenate or interpolate user data into SQL
statements:

did = 280
dnm = "Facility"

!! Never do this !!
sql = f"""insert into departments (department_id, department_name)
 values ({did}, {dnm})"""
cursor.execute(sql)

Bind variables reduce parsing and execution costs when statements are executed
more than once with different data values. If you do not use bind variables,
Oracle must reparse and cache multiple statements. When using bind variables,
Oracle Database may be able to reuse the statement execution plan and context.

Bind variables can be used to substitute data, but cannot be used to substitute
the text of the statement. You cannot, for example, use a bind variable where
a column name or a table name is required. Bind variables also cannot be used
in Data Definition Language (DDL) statements, such as CREATE TABLE or ALTER
statements.

Binding By Name or Position

Binding can be done by name or by position. A named bind is performed when the
bind variables in a statement are associated with a name. For example:

cursor.execute("""
 insert into departments (department_id, department_name)
 values (:dept_id, :dept_name)""", dept_id=280,
 dept_name="Facility")

alternatively, the parameters can be passed as a dictionary instead of as
keyword parameters
data = { dept_id=280, dept_name="Facility" }
cursor.execute("""
 insert into departments (department_id, department_name)
 values (:dept_id, :dept_name)""", data)

In the above example, the keyword parameter names or the keys of the dictionary
must match the bind variable names. The advantages of this approach are that
the location of the bind variables in the statement is not important, the
names can be meaningful and the names can be repeated while still only
supplying the value once.

A positional bind is performed when a list of bind values are passed to the
execute() call. For example:

cursor.execute("""
 insert into departments (department_id, department_name)
 values (:dept_id, :dept_name)""", [280, "Facility"])

Note that for SQL statements, the order of the bind values must exactly match
the order of each bind variable and duplicated names must have their values
repeated. For PL/SQL statements, however, the order of the bind values must
exactly match the order of each unique bind variable found in the PL/SQL
block and values should not be repeated. In order to avoid this difference,
binding by name is recommended when bind variable names are repeated.

Bind Direction

The caller can supply data to the database (IN), the database can return
data to the caller (OUT) or the caller can supply initial data to the
database and the database can supply the modified data back to the caller
(IN/OUT). This is known as the bind direction.

The examples shown above have all supplied data to the database and are
therefore classified as IN bind variables. In order to have the database return
data to the caller, a variable must be created. This is done by calling the
method Cursor.var(), which identifies the type of data that will be
found in that bind variable and its maximum size among other things.

Here is an example showing how to use OUT binds. It calculates the sum of the
integers 8 and 7 and stores the result in an OUT bind variable of type integer:

outVal = cursor.var(int)
cursor.execute("""
 begin
 :outVal := :inBindVar1 + :inBindVar2;
 end;""", outVal=outVal, inBindVar1=8, inBindVar2=7)
print(outVal.getvalue()) # will print 15

If instead of simply getting data back you wish to supply an initial value to
the database, you can set the variable’s initial value. This example is the
same as the previous one but it sets the initial value first:

inOutVal = cursor.var(int)
inOutVal.setvalue(0, 25)
cursor.execute("""
 begin
 :inOutBindVar := :inOutBindVar + :inBindVar1 + :inBindVar2;
 end;""", inOutBindVar=inOutVal, inBindVar1=8, inBindVar2=7)
print(inOutVal.getvalue()) # will print 40

When binding data to parameters of PL/SQL procedures that are declared as OUT
parameters, it is worth noting that any value that is set in the bind variable
will be ignored. In addition, any parameters declared as IN/OUT that do not
have a value set will start out with a value of null.

Binding Null Values

In cx_Oracle, null values are represented by the Python singleton None.

For example:

cursor.execute("""
 insert into departments (department_id, department_name)
 values (:dept_id, :dept_name)""", dept_id=280, dept_name=None)

In this specific case, because the DEPARTMENT_NAME column is defined as a
NOT NULL column, an error will occur:

cx_Oracle.IntegrityError: ORA-01400: cannot insert NULL into ("HR"."DEPARTMENTS"."DEPARTMENT_NAME")

If this value is bound directly, cx_Oracle assumes it to be a string
(equivalent to a VARCHAR2 column). If you need to use a different Oracle type
you will need to make a call to Cursor.setinputsizes() or create a bind
variable with the correct type by calling Cursor.var().

Binding ROWID Values

The pseudo-column ROWID uniquely identifies a row within a table. In
cx_Oracle, ROWID values are represented as strings. The example below shows
fetching a row and then updating that row by binding its rowid:

fetch the row
cursor.execute("""
 select rowid, manager_id
 from departments
 where department_id = :dept_id""", dept_id=280)
rowid, manager_id = cursor.fetchone()

update the row by binding ROWID
cursor.execute("""
 update departments set
 manager_id = :manager_id
 where rowid = :rid""", manager_id=205, rid=rowid)

DML RETURNING Bind Variables

When a RETURNING clause is used with a DML statement like UPDATE,
INSERT, or DELETE, the values are returned to the application through
the use of OUT bind variables. Consider the following example:

The RETURNING INTO bind variable is a string
dept_name = cursor.var(str)

cursor.execute("""
 update departments set
 location_id = :loc_id
 where department_id = :dept_id
 returning department_name into :dept_name""",
 loc_id=1700, dept_id=50, dept_name=dept_name)
print(dept_name.getvalue()) # will print ['Shipping']

In the above example, since the WHERE clause matches only one row, the output
contains a single item in the list. If the WHERE clause matched multiple rows,
however, the output would contain as many items as there were rows that were
updated.

No duplicate binds are allowed in a DML statement with a RETURNING clause, and
no duplication is allowed between bind variables in the DML section and the
RETURNING section of the statement.

LOB Bind Variables

Database CLOBs, NCLOBS, BLOBs and BFILEs can be bound with types
cx_Oracle.CLOB, cx_Oracle.NCLOB, cx_Oracle.BLOB
and cx_Oracle.BFILE respectively. LOBs fetched from the database or
created with Connection.createlob() can also be bound.

LOBs may represent Oracle Database persistent LOBs (those stored in tables) or
temporary LOBs (such as those created with Connection.createlob() or
returned by some SQL and PL/SQL operations).

LOBs can be used as IN, OUT or IN/OUT bind variables.

See Using CLOB and BLOB Data for examples.

REF CURSOR Bind Variables

cx_Oracle provides the ability to bind and define PL/SQL REF cursors. As an
example, consider the PL/SQL procedure:

CREATE OR REPLACE PROCEDURE find_employees (
 p_query IN VARCHAR2,
 p_results OUT SYS_REFCURSOR
) AS
BEGIN
 OPEN p_results FOR
 SELECT employee_id, first_name, last_name
 FROM employees
 WHERE UPPER(first_name || ' ' || last_name || ' ' || email)
 LIKE '%' || UPPER(p_query) || '%';
END;
/

A newly opened cursor can be bound to the REF CURSOR parameter, as shown in the
following Python code. After the PL/SQL procedure has been called with
Cursor.callproc(), the cursor can then be fetched just like any other
cursor which had executed a SQL query:

refCursor = connection.cursor()
cursor.callproc("find_employees", ['Smith', refCursor])
for row in refCursor:
 print(row)

With Oracle’s sample HR schema [https://github.com/oracle/db-sample-schemas] there are two
employees with the last name ‘Smith’ so the result is:

(159, 'Lindsey', 'Smith')
(171, 'William', 'Smith')

To return a REF CURSOR from a PL/SQL function, use cx_Oracle.CURSOR for the
return type of Cursor.callfunc():

refCursor = cursor.callfunc('example_package.f_get_cursor', cx_Oracle.CURSOR)
for row in refCursor:
 print(row)

Binding PL/SQL Collections

PL/SQL Collections like Associative Arrays can be bound as IN, OUT, and IN/OUT
variables. When binding IN values, an array can be passed directly as shown in
this example, which sums up the lengths of all of the strings in the provided
array. First the PL/SQL package definition:

create or replace package mypkg as

 type udt_StringList is table of varchar2(100) index by binary_integer;

 function DemoCollectionIn (
 a_Values udt_StringList
) return number;

end;
/

create or replace package body mypkg as

 function DemoCollectionIn (
 a_Values udt_StringList
) return number is
 t_ReturnValue number := 0;
 begin
 for i in 1..a_Values.count loop
 t_ReturnValue := t_ReturnValue + length(a_Values(i));
 end loop;
 return t_ReturnValue;
 end;

end;
/

Then the Python code:

values = ["String One", "String Two", "String Three"]
returnVal = cursor.callfunc("mypkg.DemoCollectionIn", int, [values])
print(returnVal) # will print 32

In order get values back from the database, a bind variable must be created
using Cursor.arrayvar(). The first parameter to this method is a Python
type that cx_Oracle knows how to handle or one of the cx_Oracle Types.
The second parameter is the maximum number of elements that the array can hold
or an array providing the value (and indirectly the maximum length). The final
parameter is optional and only used for strings and bytes. It identifies the
maximum length of the strings and bytes that can be stored in the array. If not
specified, the length defaults to 4000 bytes.

Consider the following PL/SQL package:

create or replace package mypkg as

 type udt_StringList is table of varchar2(100) index by binary_integer;

 procedure DemoCollectionOut (
 a_NumElements number,
 a_Values out nocopy udt_StringList
);

 procedure DemoCollectionInOut (
 a_Values in out nocopy udt_StringList
);

end;
/

create or replace package body mypkg as

 procedure DemoCollectionOut (
 a_NumElements number,
 a_Values out nocopy udt_StringList
) is
 begin
 for i in 1..a_NumElements loop
 a_Values(i) := 'Demo out element #' || to_char(i);
 end loop;
 end;

 procedure DemoCollectionInOut (
 a_Values in out nocopy udt_StringList
) is
 begin
 for i in 1..a_Values.count loop
 a_Values(i) := 'Converted element #' || to_char(i) ||
 ' originally had length ' || length(a_Values(i));
 end loop;
 end;

end;
/

The Python code to process an OUT collection would look as follows. Note the
call to Cursor.arrayvar() which creates space for an array of strings.
Each string would permit up to 100 bytes and only 10 strings would be
permitted. If the PL/SQL block exceeds the maximum number of strings allowed
the error ORA-06513: PL/SQL: index for PL/SQL table out of range for host
language array would be raised.

outArrayVar = cursor.arrayvar(str, 10, 100)
cursor.callproc("mypkg.DemoCollectionOut", [5, outArrayVar])
for val in outArrayVar.getvalue():
 print(val)

This would produce the following output:

Demo out element #1
Demo out element #2
Demo out element #3
Demo out element #4
Demo out element #5

The Python code to process an IN/OUT collections is similar. Note the different
call to Cursor.arrayvar() which creates space for an array of strings,
but uses an array to determine both the maximum length of the array and its
initial value.

inValues = ["String One", "String Two", "String Three", "String Four"]
inOutArrayVar = cursor.arrayvar(str, inValues)
cursor.callproc("mypkg.DemoCollectionInOut", [inOutArrayVar])
for val in inOutArrayVar.getvalue():
 print(val)

This would produce the following output:

Converted element #1 originally had length 10
Converted element #2 originally had length 10
Converted element #3 originally had length 12
Converted element #4 originally had length 11

If an array variable needs to have an initial value but also needs to allow
for more elements than the initial value contains, the following code can be
used instead:

inOutArrayVar = cursor.arrayvar(str, 10, 100)
inOutArrayVar.setvalue(0, ["String One", "String Two"])

All of the collections that have been bound in preceding examples have used
contiguous array elements. If an associative array with sparse array elements
is needed, a different approach is required. Consider the following PL/SQL
code:

create or replace package mypkg as

 type udt_StringList is table of varchar2(100) index by binary_integer;

 procedure DemoCollectionOut (
 a_Value out nocopy udt_StringList
);

end;
/

create or replace package body mypkg as

 procedure DemoCollectionOut (
 a_Value out nocopy udt_StringList
) is
 begin
 a_Value(-1048576) := 'First element';
 a_Value(-576) := 'Second element';
 a_Value(284) := 'Third element';
 a_Value(8388608) := 'Fourth element';
 end;

end;
/

Note that the collection element indices are separated by large values. The
technique used above would fail with the exception ORA-06513: PL/SQL: index
for PL/SQL table out of range for host language array. The code required to
process this collection looks like this instead:

collectionType = connection.gettype("MYPKG.UDT_STRINGLIST")
collection = collectionType.newobject()
cursor.callproc("mypkg.DemoCollectionOut", [collection])
print(collection.aslist())

This produces the output:

['First element', 'Second element', 'Third element', 'Fourth element']

Note the use of Object.aslist() which returns the collection element
values in index order as a simple Python list. The indices themselves are lost
in this approach. Starting from cx_Oracle 7.0, the associative array can be
turned into a Python dictionary using Object.asdict(). If that value
was printed in the previous example instead, the output would be:

{-1048576: 'First element', -576: 'Second element', 284: 'Third element', 8388608: 'Fourth element'}

If the elements need to be traversed in index order, the methods
Object.first() and Object.next() can be used. The method
Object.getelement() can be used to acquire the element at a particular
index. This is shown in the following code:

ix = collection.first()
while ix is not None:
 print(ix, "->", collection.getelement(ix))
 ix = collection.next(ix)

This produces the output:

-1048576 -> First element
-576 -> Second element
284 -> Third element
8388608 -> Fourth element

Similarly, the elements can be traversed in reverse index order using the
methods Object.last() and Object.prev() as shown in the
following code:

ix = collection.last()
while ix is not None:
 print(ix, "->", collection.getelement(ix))
 ix = collection.prev(ix)

This produces the output:

8388608 -> Fourth element
284 -> Third element
-576 -> Second element
-1048576 -> First element

Binding PL/SQL Records

PL/SQL record type objects can also be bound for IN, OUT and IN/OUT
bind variables. For example:

create or replace package mypkg as

 type udt_DemoRecord is record (
 NumberValue number,
 StringValue varchar2(30),
 DateValue date,
 BooleanValue boolean
);

 procedure DemoRecordsInOut (
 a_Value in out nocopy udt_DemoRecord
);

end;
/

create or replace package body mypkg as

 procedure DemoRecordsInOut (
 a_Value in out nocopy udt_DemoRecord
) is
 begin
 a_Value.NumberValue := a_Value.NumberValue * 2;
 a_Value.StringValue := a_Value.StringValue || ' (Modified)';
 a_Value.DateValue := a_Value.DateValue + 5;
 a_Value.BooleanValue := not a_Value.BooleanValue;
 end;

end;
/

Then this Python code can be used to call the stored procedure which will
update the record:

create and populate a record
recordType = connection.gettype("MYPKG.UDT_DEMORECORD")
record = recordType.newobject()
record.NUMBERVALUE = 6
record.STRINGVALUE = "Test String"
record.DATEVALUE = datetime.datetime(2016, 5, 28)
record.BOOLEANVALUE = False

show the original values
print("NUMBERVALUE ->", record.NUMBERVALUE)
print("STRINGVALUE ->", record.STRINGVALUE)
print("DATEVALUE ->", record.DATEVALUE)
print("BOOLEANVALUE ->", record.BOOLEANVALUE)
print()

call the stored procedure which will modify the record
cursor.callproc("mypkg.DemoRecordsInOut", [record])

show the modified values
print("NUMBERVALUE ->", record.NUMBERVALUE)
print("STRINGVALUE ->", record.STRINGVALUE)
print("DATEVALUE ->", record.DATEVALUE)
print("BOOLEANVALUE ->", record.BOOLEANVALUE)

This will produce the following output:

NUMBERVALUE -> 6
STRINGVALUE -> Test String
DATEVALUE -> 2016-05-28 00:00:00
BOOLEANVALUE -> False

NUMBERVALUE -> 12
STRINGVALUE -> Test String (Modified)
DATEVALUE -> 2016-06-02 00:00:00
BOOLEANVALUE -> True

Note that when manipulating records, all of the attributes must be set by the
Python program in order to avoid an Oracle Client bug which will result in
unexpected values or the Python application segfaulting.

Binding Spatial Datatypes

Oracle Spatial datatypes objects can be represented by Python objects
and its attribute values can be read and updated. The objects can
further be bound and committed to database. See the GitHub sample [https://github.com/oracle/python-cx_Oracle/blob/master/samples/InsertGeometry.py] for an example.

Changing Bind Data Types using an Input Type Handler

Input Type Handlers allow applications to change how data is bound to
statements, or even to enable new types to be bound directly.

An input type handler is enabled by setting the attribute
Cursor.inputtypehandler or Connection.inputtypehandler.

Input type handlers can be combined with variable converters to bind Python
objects seamlessly:

A standard Python object
class Building(object):
 def __init__(self, buildingId, description, numFloors, dateBuilt):
 self.buildingId = buildingId
 self.description = description
 self.numFloors = numFloors
 self.dateBuilt = dateBuilt

building = Building(1, "Skyscraper 1", 5, datetime.date(2001, 5, 24))

Get Python representation of the Oracle user defined type UDT_BUILDING
objType = con.gettype("UDT_BUILDING")

convert a Python Building object to the Oracle user defined type UDT_BUILDING
def BuildingInConverter(value):
 obj = objType.newobject()
 obj.BUILDINGID = value.buildingId
 obj.DESCRIPTION = value.description
 obj.NUMFLOORS = value.numFloors
 obj.DATEBUILT = value.dateBuilt
 return obj

def InputTypeHandler(cursor, value, numElements):
 if isinstance(value, Building):
 return cursor.var(cx_Oracle.OBJECT, arraysize = numElements,
 inconverter = BuildingInConverter, typename = objType.name)

With the input type handler, the bound Python object is converted
to the required Oracle object before being inserted
cur.inputtypehandler = InputTypeHandler
cur.execute("insert into myTable values (:1, :2)", (1, building))

Binding Multiple Values to a SQL WHERE IN Clause

To use an IN clause with multiple values in a WHERE clause, you must define and
bind multiple values. You cannot bind an array of values. For example:

cursor.execute("""
 select employee_id, first_name, last_name
 from employees
 where last_name in (:name1, :name2)""",
 name1="Smith", name2="Taylor")
for row in cursor:
 print(row)

This will produce the following output:

(159, 'Lindsey', 'Smith')
(171, 'William', 'Smith')
(176, 'Jonathon', 'Taylor')
(180, 'Winston', 'Taylor')

If this sort of query is executed multiple times with differing numbers of
values, a bind variable should be included for each possible value up to the
maximum number of values that can be provided. Missing values can be bound with
the value None. For example, if the query above is used for up to 5 values,
the code should be adjusted as follows:

cursor.execute("""
 select employee_id, first_name, last_name
 from employees
 where last_name in (:name1, :name2, :name3, :name4, :name5)""",
 name1="Smith", name2="Taylor", name3=None, name4=None, name5=None)
for row in cursor:
 print(row)

This will produce the same output as the original example.

If the number of values is only going to be known at runtime, then a SQL
statement can be built up as follows:

bindValues = ["Gates", "Marvin", "Fay"]
bindNames = [":" + str(i + 1) for i in range(len(bindValues))]
sql = "select employee_id, first_name, last_name from employees " + \
 "where last_name in (%s)" % (",".join(bindNames))
cursor.execute(sql, bindValues)
for row in cursor:
 print(row)

Another solution for a larger number of values is to construct a SQL
statement like:

SELECT ... WHERE col IN (<something that returns a list of rows>)

The easiest way to do the ‘<something that returns a list of rows>’
will depend on how the data is initially represented and the number of
items. You might look at using CONNECT BY or nested tables. Or,
for really large numbers of items, you might prefer to use a global
temporary table.

Binding Column and Table Names

Column and table names cannot be bound in SQL queries. You can concatenate
text to build up a SQL statement, but make sure you use a white-list or other
means to validate the data in order to avoid SQL Injection security issues:

tableWhiteList = ['employees', 'departments']
tableName = getTableName() # get the table name from user input
if tableName not in tableWhiteList:
 raise Exception('Invalid table name')
sql = 'select * from ' + tableName

Binding column names can be done either by using the above method or by using a
CASE statement. The example below demonstrates binding a column name in an
ORDER BY clause:

sql = """
 SELECT * FROM departments
 ORDER BY
 CASE :bindvar
 WHEN 'department_id' THEN DEPARTMENT_ID
 ELSE MANAGER_ID
 END"""

columnName = getColumnName() # Obtain a column name from the user
cursor.execute(sql, [colname])

Depending on the name provided by the user, the query results will be
ordered either by the column DEPARTMENT_ID or the column MANAGER_ID.

Using CLOB and BLOB Data

Oracle Database uses LOB Objects to store large data such as text, images,
videos and other multimedia formats. The maximum size of a LOB is limited to
the size of the tablespace storing it.

There are four types of LOB (large object):

	BLOB - Binary Large Object, used for storing binary data. cx_Oracle uses
the type cx_Oracle.BLOB.

	CLOB - Character Large Object, used for string strings in the database
character set format. cx_Oracle uses the type cx_Oracle.CLOB.

	NCLOB - National Character Large Object, used for string strings in the
national character set format. cx_Oracle uses the type
cx_Oracle.NCLOB.

	BFILE - External Binary File, used for referencing a file stored on the
host operating system outside of the database. cx_Oracle uses the type
cx_Oracle.BFILE.

LOBs can be streamed to, and from, Oracle Database.

LOBs up to 1 GB in length can be also be handled directly as strings or bytes in
cx_Oracle. This makes LOBs easy to work with, and has significant performance
benefits over streaming. However it requires the entire LOB data to be present
in Python memory, which may not be possible.

See GitHub [https://github.com/oracle/python-cx_Oracle/tree/master/samples] for LOB examples.

Simple Insertion of LOBs

Consider a table with CLOB and BLOB columns:

CREATE TABLE lob_tbl (
 id NUMBER,
 c CLOB,
 b BLOB
);

With cx_Oracle, LOB data can be inserted in the table by binding strings or
bytes as needed:

with open('example.txt', 'r') as f:
 textdata = f.read()

with open('image.png', 'rb') as f:
 imgdata = f.read()

cursor.execute("""
 insert into lob_tbl (id, c, b)
 values (:lobid, :clobdata, :blobdata)""",
 lobid=10, clobdata=textdata, blobdata=imgdata)

Note that with this approach, LOB data is limited to 1 GB in size.

Fetching LOBs as Strings and Bytes

CLOBs and BLOBs smaller than 1 GB can queried from the database directly as
strings and bytes. This can be much faster than streaming.

A Connection.outputtypehandler or Cursor.outputtypehandler needs
to be used as shown in this example:

def OutputTypeHandler(cursor, name, defaultType, size, precision, scale):
 if defaultType == cx_Oracle.CLOB:
 return cursor.var(cx_Oracle.LONG_STRING, arraysize=cursor.arraysize)
 if defaultType == cx_Oracle.BLOB:
 return cursor.var(cx_Oracle.LONG_BINARY, arraysize=cursor.arraysize)

idVal = 1
textData = "The quick brown fox jumps over the lazy dog"
bytesData = b"Some binary data"
cursor.execute("insert into lob_tbl (id, c, b) values (:1, :2, :3)",
 [idVal, textData, bytesData])

connection.outputtypehandler = OutputTypeHandler
cursor.execute("select c, b from lob_tbl where id = :1", [idVal])
clobData, blobData = cursor.fetchone()
print("CLOB length:", len(clobData))
print("CLOB data:", clobData)
print("BLOB length:", len(blobData))
print("BLOB data:", blobData)

This displays:

CLOB length: 43
CLOB data: The quick brown fox jumps over the lazy dog
BLOB length: 16
BLOB data: b'Some binary data'

Streaming LOBs (Read)

Without the output type handler, the CLOB and BLOB values are fetched as
LOB objects. The size of the LOB object can be obtained by
calling LOB.size() and the data can be read by calling
LOB.read():

idVal = 1
textData = "The quick brown fox jumps over the lazy dog"
bytesData = b"Some binary data"
cursor.execute("insert into lob_tbl (id, c, b) values (:1, :2, :3)",
 [idVal, textData, bytesData])

cursor.execute("select b, c from lob_tbl where id = :1", [idVal])
b, c = cursor.fetchone()
print("CLOB length:", c.size())
print("CLOB data:", c.read())
print("BLOB length:", b.size())
print("BLOB data:", b.read())

This approach produces the same results as the previous example but it will
perform more slowly because it requires more round-trips to Oracle Database and
has higher overhead. It is needed, however, if the LOB data cannot be fetched as
one block of data from the server.

To stream the BLOB column, the LOB.read() method can be called
repeatedly until all of the data has been read, as shown below:

cursor.execute("select b from lob_tbl where id = :1", [10])
blob, = cursor.fetchone()
offset = 1
numBytesInChunk = 65536
with open("image.png", "wb") as f:
 while True:
 data = blob.read(offset, numBytesInChunk)
 if data:
 f.write(data)
 if len(data) < numBytesInChunk:
 break
 offset += len(data)

Streaming LOBs (Write)

If a row containing a LOB is being inserted or updated, and the quantity of
data that is to be inserted or updated cannot fit in a single block of data,
the data can be streamed using the method LOB.write() instead as shown
in the following code:

idVal = 9
lobVar = cursor.var(cx_Oracle.BLOB)
cursor.execute("""
 insert into lob_tbl (id, b)
 values (:1, empty_blob())
 returning b into :2""", [idVal, lobVar])
blob, = lobVar.getvalue()
offset = 1
numBytesInChunk = 65536
with open("image.png", "rb") as f:
 while True:
 data = f.read(numBytesInChunk)
 if data:
 blob.write(data, offset)
 if len(data) < numBytesInChunk:
 break
 offset += len(data)
connection.commit()

Temporary LOBs

All of the examples shown thus far have made use of permanent LOBs. These are
LOBs that are stored in the database. Oracle also supports temporary LOBs that
are not stored in the database but can be used to pass large quantities of
data. These LOBs use space in the temporary tablespace until all variables
referencing them go out of scope or the connection in which they are created is
explicitly closed.

When calling PL/SQL procedures with data that exceeds 32,767 bytes in length,
cx_Oracle automatically creates a temporary LOB internally and passes that
value through to the procedure. If the data that is to be passed to the
procedure exceeds that which can fit in a single block of data, however, you
can use the method Connection.createlob() to create a temporary LOB.
This LOB can then be read and written just like in the examples shown above for
persistent LOBs.

Working with the JSON Data Type

Native support for JSON data was introduced in Oracle database 12c. You can use
the relational database to store and query JSON data and benefit from the easy
extensibility of JSON data while retaining the performance and structure of the
relational database. JSON data is stored in the database in BLOB, CLOB or
VARCHAR2 columns. For performance reasons, it is always a good idea to store
JSON data in BLOB columns. To ensure that only JSON data is stored in that
column, use a check constraint with the clause is JSON as shown in the
following SQL to create a table containing JSON data:

create table customers (
 id integer not null primary key,
 json_data blob check (json_data is json)
);

The following Python code can then be used to insert some data into the
database:

import json

customerData = dict(name="Rod", dept="Sales", location="Germany")
cursor.execute("insert into customers (id, json_data) values (:1, :2)",
 [1, json.dumps(customerData)])

The data can be retrieved in its entirety using the following code:

import json

for blob, in cursor.execute("select json_data from customers"):
 data = json.loads(blob.read())
 print(data["name"]) # will print Rod

If only the department needs to be read, the following code can be used
instead:

for deptName, in cursor.execute("select c.json_data.dept from customers c"):
 print(deptName) # will print Sales

You can convert the data stored in relational tables into JSON data by using
the JSON_OBJECT SQL operator. For example:

import json
cursor.execute("""
 select json_object(
 'id' value employee_id,
 'name' value (first_name || ' ' || last_name))
 from employees where rownum <= 3""")
for value, in cursor:
 print(json.loads(value,))

The result is:

{'id': 100, 'name': 'Steven King'}
{'id': 101, 'name': 'Neena Kochhar'}
{'id': 102, 'name': 'Lex De Haan'}

See JSON Developer’s Guide [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-17642E43-7D87-4590-8870-06E9FDE9A6E9] for more information about
using JSON in Oracle Database.

Simple Oracle Document Access (SODA)

Overview

Oracle Database Simple Oracle Document Access (SODA) allows documents to be
inserted, queried, and retrieved from Oracle Database using a set of
NoSQL-style cx_Oracle methods. Documents are generally JSON data but they can
be any data at all (including video, images, sounds, or other binary content).
Documents can be fetched from the database by key lookup or by using
query-by-example (QBE) pattern-matching.

SODA uses a SQL schema to store documents but you do not need to know SQL or
how the documents are stored. However, access via SQL does allow use of
advanced Oracle Database functionality such as analytics for reporting.

For general information on SODA, see the SODA home page [https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html]
and Oracle Database Introduction to SODA [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=ADSDI].

cx_Oracle uses the following objects for SODA:

	SODA Database Object: The top level object for cx_Oracle SODA
operations. This is acquired from an Oracle Database connection. A ‘SODA
database’ is an abstraction, allowing access to SODA collections in that
‘SODA database’, which then allow access to documents in those collections.
A SODA database is analogous to an Oracle Database user or schema, a
collection is analogous to a table, and a document is analogous to a table
row with one column for a unique document key, a column for the document
content, and other columns for various document attributes.

	SODA Collection Object: Represents a collection of SODA
documents. By default, collections allow JSON documents to be stored. This
is recommended for most SODA users. However optional metadata can set
various details about a collection, such as its database storage, whether it
should track version and time stamp document components, how such components
are generated, and what document types are supported. By default, the name of
the Oracle Database table storing a collection is the same as the collection
name. Note: do not use SQL to drop the database table, since SODA metadata
will not be correctly removed. Use the SodaCollection.drop() method
instead.

	SODA Document Object: Represents a document. Typically the
document content will be JSON. The document has properties including the
content, a key, timestamps, and the media type. By default, document keys
are automatically generated. See SODA Document objects for
the forms of SodaDoc.

	SODA Document Cursor: A cursor object representing the
result of the SodaOperation.getCursor() method from a
SodaCollection.find() operation. It can be iterated over to access
each SodaDoc.

	SODA Operation Object: An internal object used with
SodaCollection.find() to perform read and write operations on
documents. Chained methods set properties on a SodaOperation object which is
then used by a terminal method to find, count, replace, or remove documents.
This is an internal object that should not be directly accessed.

SODA Example

Creating and adding documents to a collection can be done as follows:

soda = connection.getSodaDatabase()

create a new SODA collection; this will open an existing collection, if
the name is already in use
collection = soda.createCollection("mycollection")

insert a document into the collection; for the common case of a JSON
document, the content can be a simple Python dictionary which will
internally be converted to a JSON document
content = {'name': 'Matilda', 'address': {'city': 'Melbourne'}}
returnedDoc = collection.insertOneAndGet(content)
key = returnedDoc.key
print('The key of the new SODA document is: ', key)

By default, a system generated key is created when documents are inserted.
With a known key, you can retrieve a document:

this will return a dictionary (as was inserted in the previous code)
content = collection.find().key(key).getOne().getContent()
print(content)

You can also search for documents using query-by-example syntax:

Find all documents with names like 'Ma%'
print("Names matching 'Ma%'")
qbe = {'name': {'$like': 'Ma%'}}
for doc in collection.find().filter(qbe).getDocuments():
 content = doc.getContent()
 print(content["name"])

See the samples directory [https://github.com/oracle/python-cx_Oracle/tree/master/samples]
for runnable SODA examples.

Working with XMLTYPE

Oracle XMLType columns are fetched as strings by default. This is currently
limited to the maximum length of a VARCHAR2 column. To return longer XML
values, they must be queried as LOB values instead.

The examples below demonstrate using XMLType data with cx_Oracle. The
following table will be used in these examples:

CREATE TABLE xml_table (
 id NUMBER,
 xml_data SYS.XMLTYPE
);

Inserting into the table can be done by simply binding a string as shown:

xmlData = """<?xml version="1.0"?>
 <customer>
 <name>John Smith</name>
 <Age>43</Age>
 <Designation>Professor</Designation>
 <Subject>Mathematics</Subject>
 </customer>"""
cursor.execute("insert into xml_table values (:id, :xml)",
 id=1, xml=xmlData)

This approach works with XML strings up to 1 GB in size. For longer strings, a
temporary CLOB must be created using Connection.createlob() and bound
as shown:

clob = connection.createlob(cx_Oracle.CLOB)
clob.write(xmlData)
cursor.execute("insert into xml_table values (:id, sys.xmltype(:xml))",
 id=2, xml=clob)

Fetching XML data can be done simply for values that are shorter than the
length of a VARCHAR2 column, as shown:

cursor.execute("select xml_data from xml_table where id = :id", id=1)
xmlData, = cursor.fetchone()
print(xmlData) # will print the string that was originally stored

For values that exceed the length of a VARCHAR2 column, a CLOB must be returned
instead by using the function XMLTYPE.GETCLOBVAL() as shown:

cursor.execute("""
 select xmltype.getclobval(xml_data)
 from xml_table
 where id = :id""", id=1)
clob, = cursor.fetchone()
print(clob.read())

The LOB that is returned can be streamed or a string can be returned instead of
a CLOB. See Using CLOB and BLOB Data for more information about processing LOBs.

Batch Statement Execution and Bulk Loading

Inserting or updating multiple rows can be performed efficiently with
Cursor.executemany(), making it easy to work with large data sets with
cx_Oracle. This method can significantly outperform repeated calls to
Cursor.execute() by reducing network transfer costs and database load.
The executemany() method can also be used to execute PL/SQL
statements multiple times at once.

There are examples in the GitHub examples [https://github.com/oracle/python-cx_Oracle/tree/master/samples]
directory.

The following tables will be used in the samples that follow:

create table ParentTable (
 ParentId number(9) not null,
 Description varchar2(60) not null,
 constraint ParentTable_pk primary key (ParentId)
);

create table ChildTable (
 ChildId number(9) not null,
 ParentId number(9) not null,
 Description varchar2(60) not null,
 constraint ChildTable_pk primary key (ChildId),
 constraint ChildTable_fk foreign key (ParentId)
 references ParentTable
);

Batch Execution of SQL

The following example inserts five rows into the table ParentTable:

dataToInsert = [
 (10, 'Parent 10'),
 (20, 'Parent 20'),
 (30, 'Parent 30'),
 (40, 'Parent 40'),
 (50, 'Parent 50')
]
cursor.executemany("insert into ParentTable values (:1, :2)", dataToInsert)

This code requires only one round-trip from the client to the database instead
of the five round-trips that would be required for repeated calls to
execute(). For very large data sets there may be an external
buffer or network limits to how many rows can be processed, so repeated calls
to executemany() may be required. The limits are based on both the number
of rows being processed as well as the “size” of each row that is being
processed. Repeated calls to executemany() are still
better than repeated calls to execute().

Batch Execution of PL/SQL

PL/SQL functions and procedures and anonymous PL/SQL blocks can also be called
using executemany() in order to improve performance. For
example:

dataToInsert = [
 (10, 'Parent 10'),
 (20, 'Parent 20'),
 (30, 'Parent 30'),
 (40, 'Parent 40'),
 (50, 'Parent 50')
]
cursor.executemany("begin mypkg.create_parent(:1, :2); end;", dataToInsert)

Note that the batcherrors parameter (discussed below) cannot be used with
PL/SQL block execution.

Handling Data Errors

Large datasets may contain some invalid data. When using batch execution as
discussed above, the entire batch will be discarded if a single error is
detected, potentially eliminating the performance benefits of batch execution
and increasing the complexity of the code required to handle those errors. If
the parameter batchErrors is set to the value True when calling
executemany(), however, processing will continue even if there
are data errors in some rows, and the rows containing errors can be examined
afterwards to determine what course the application should take. Note that if
any errors are detected, a transaction will be started but not committed, even
if Connection.autocommit is set to True. After examining the errors
and deciding what to do with them, the application needs to explicitly commit
or roll back the transaction with Connection.commit() or
Connection.rollback(), as needed.

This example shows how data errors can be identified:

dataToInsert = [
 (60, 'Parent 60'),
 (70, 'Parent 70'),
 (70, 'Parent 70 (duplicate)'),
 (80, 'Parent 80'),
 (80, 'Parent 80 (duplicate)'),
 (90, 'Parent 90')
]
cursor.executemany("insert into ParentTable values (:1, :2)", dataToInsert,
 batcherrors=True)
for error in cursor.getbatcherrors():
 print("Error", error.message, "at row offset", error.offset)

The output is:

Error ORA-00001: unique constraint (PYTHONDEMO.PARENTTABLE_PK) violated at row offset 2
Error ORA-00001: unique constraint (PYTHONDEMO.PARENTTABLE_PK) violated at row offset 4

The row offset is the index into the array of the data that could not be
inserted due to errors. The application could choose to commit or rollback the
other rows that were successfully inserted. Alternatively, it could correct
the data for the two invalid rows and attempt to insert them again before
committing.

Identifying Affected Rows

When executing a DML statement using execute(), the number of
rows affected can be examined by looking at the attribute
rowcount. When performing batch executing with
Cursor.executemany(), however, the row count will return the total
number of rows that were affected. If you want to know the total number of rows
affected by each row of data that is bound you must set the parameter
arraydmlrowcounts to True, as shown:

parentIdsToDelete = [20, 30, 50]
cursor.executemany("delete from ChildTable where ParentId = :1",
 [(i,) for i in parentIdsToDelete],
 arraydmlrowcounts=True)
rowCounts = cursor.getarraydmlrowcounts()
for parentId, count in zip(parentIdsToDelete, rowCounts):
 print("Parent ID:", parentId, "deleted", count, "rows.")

Using the data found in the GitHub samples [https://github.com/oracle/python-cx_Oracle/tree/master/samples] the output
is as follows:

Parent ID: 20 deleted 3 rows.
Parent ID: 30 deleted 2 rows.
Parent ID: 50 deleted 4 rows.

DML RETURNING

DML statements like INSERT, UPDATE, DELETE and MERGE can return values by using
the DML RETURNING syntax. A bind variable can be created to accept this data.
See Using Bind Variables for more information.

If, instead of merely deleting the rows as shown in the previous example, you
also wanted to know some information about each of the rows that were deleted,
you could use the following code:

parentIdsToDelete = [20, 30, 50]
childIdVar = cursor.var(int, arraysize=len(parentIdsToDelete))
cursor.setinputsizes(None, childIdVar)
cursor.executemany("""
 delete from ChildTable
 where ParentId = :1
 returning ChildId into :2""",
 [(i,) for i in parentIdsToDelete])
for ix, parentId in enumerate(parentIdsToDelete):
 print("Child IDs deleted for parent ID", parentId, "are",
 childIdVar.getvalue(ix))

The output would then be:

Child IDs deleted for parent ID 20 are [1002, 1003, 1004]
Child IDs deleted for parent ID 30 are [1005, 1006]
Child IDs deleted for parent ID 50 are [1012, 1013, 1014, 1015]

Note that the bind variable created to accept the returned data must have an
arraysize large enough to hold data for each row that is processed. Also,
the call to Cursor.setinputsizes() binds this variable immediately so
that it does not have to be passed in each row of data.

Predefining Memory Areas

When multiple rows of data are being processed there is the possibility that
the data is not uniform in type and size. In such cases, cx_Oracle makes some
effort to accommodate such differences. Type determination for each column is
deferred until a value that is not None is found in the column’s data. If
all values in a particular column are None, then cx_Oracle assumes the type
is a string and has a length of 1. cx_Oracle will also adjust the size of the
buffers used to store strings and bytes when a longer value is encountered in
the data. These sorts of operations incur overhead as memory has to be
reallocated and data copied. To eliminate this overhead, using
setinputsizes() tells cx_Oracle about the type and size of the
data that is going to be used.

Consider the following code:

data = [
 (110, "Parent 110"),
 (2000, "Parent 2000"),
 (30000, "Parent 30000"),
 (400000, "Parent 400000"),
 (5000000, "Parent 5000000")
]
cursor.setinputsizes(None, 20)
cursor.executemany("""
 insert into ParentTable (ParentId, Description)
 values (:1, :2)""", data)

In this example, without the call to setinputsizes(), cx_Oracle
would perform five allocations of increasing size as it discovered each new,
longer string. However cursor.setinputsizes(None, 20) tells cx_Oracle that
the maximum size of the strings that will be processed is 20 characters. Since
cx_Oracle allocates memory for each row based on this value, it is best not to
oversize it. The first parameter of None tells cx_Oracle that its default
processing will be sufficient.

Loading CSV Files into Oracle Database

The Cursor.executemany() method and csv module [https://docs.python.org/3/library/csv.html#module-csv] can be used to
efficiently load CSV (Comma Separated Values) files. For example, consider the
file data.csv:

101,Abel
154,Baker
132,Charlie
199,Delta
. . .

And the schema:

create table test (id number, name varchar2(25));

Instead of looping through each line of the CSV file and inserting it
individually, you can insert batches of records using
Cursor.executemany():

import cx_Oracle
import csv

. . .

Predefine the memory areas to match the table definition
cursor.setinputsizes(None, 25)

Adjust the batch size to meet your memory and performance requirements
batch_size = 10000

with open('testsp.csv', 'r') as csv_file:
 csv_reader = csv.reader(csv_file, delimiter=',')
 sql = "insert into test (id,name) values (:1, :2)"
 data = []
 for line in csv_reader:
 data.append((line[0], line[1]))
 if len(data) % batch_size == 0:
 cursor.executemany(sql, data)
 data = []
 if data:
 cursor.executemany(sql, data)
 con.commit()

Exception Handling

All exceptions raised by cx_Oracle are inherited from cx_Oracle.Error.
See Exceptions for more details on the various exceptions
defined by cx_Oracle. See the exception handling section in the
API manual for more details on the information available
when an exception is raised.

Applications can catch exceptions as needed. For example, when trying to add a
customer that already exists in the database, the following could could be used
to catch the exception:

try:
 cursor.execute("insert into customer values (101, 'Customer A')")
except cx_Oracle.IntegrityError:
 print("Customer ID already exists")
else:
 print("Customer added")

If information about the exception needs to be processed instead, the following
code can be used:

try:
 cursor.execute("insert into customer values (101, 'Customer A')")
except cx_Oracle.IntegrityError as e:
 errorObj, = e.args
 print("Customer ID already exists")
 print("Error Code:", errorObj.code)
 print("Error Message:", errorObj.message)
else:
 print("Customer added")

Oracle Advanced Queuing

Oracle Advanced Queuing [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=ADQUE] is a highly
configurable and scalable messaging feature of Oracle Database. It has
interfaces in various languages, letting you integrate multiple tools in your
architecture.

cx_Oracle 7.2 introduced an updated interface for Oracle Advanced
Queuing.

There are Advanced Queuing examples in the GitHub examples [https://github.com/oracle/python-cx_Oracle/tree/master/samples] directory.

Creating a Queue

Before being used, queues need to be created in the database, for example in
SQL*Plus:

begin
 dbms_aqadm.create_queue_table('MY_QUEUE_TABLE', 'RAW');
 dbms_aqadm.create_queue('DEMO_RAW_QUEUE', 'MY_QUEUE_TABLE');
 dbms_aqadm.start_queue('DEMO_RAW_QUEUE');
end;
/

This examples creates a RAW queue suitable for sending string or raw bytes
messages.

Enqueuing Messages

To send messages in Python you connect and get a queue. The
queue can be used for enqueuing, dequeuing, or both as needed.

queue = connection.queue("DEMO_RAW_QUEUE")

Now messages can be queued using Queue.enqOne(). To send three
messages:

PAYLOAD_DATA = [
 "The first message",
 "The second message",
 "The third message"
]
for data in PAYLOAD_DATA:
 queue.enqOne(connection.msgproperties(payload=data))
connection.commit()

Since the queue sending the messages is a RAW queue, the strings in this
example will be internally encoded to bytes using Connection.encoding
before being enqueued.

Dequeuing Messages

Dequeuing is performed similarly. To dequeue a message call the method
Queue.deqOne() as shown. Note that if the message is expected to be a
string, the bytes must be decoded using Connection.encoding.

queue = connection.queue("DEMO_RAW_QUEUE")
msg = queue.deqOne()
connection.commit()
print(msg.payload.decode(connection.encoding))

Using Object Queues

Named Oracle objects can be enqueued and dequeued as well. Given an object
type called UDT_BOOK:

CREATE OR REPLACE TYPE udt_book AS OBJECT (
 Title VARCHAR2(100),
 Authors VARCHAR2(100),
 Price NUMBER(5,2)
);
/

And a queue that accepts this type:

begin
 dbms_aqadm.create_queue_table('BOOK_QUEUE_TAB', 'UDT_BOOK');
 dbms_aqadm.create_queue('DEMO_BOOK_QUEUE', 'BOOK_QUEUE_TAB');
 dbms_aqadm.start_queue('DEMO_BOOK_QUEUE');
end;
/

You can queue messages:

booksType = connection.gettype("UDT_BOOK")
queue = connection.queue("DEMO_BOOK_QUEUE", booksType)

book = booksType.newobject()
book.TITLE = "Quick Brown Fox"
book.AUTHORS = "The Dog"
book.PRICE = 123

queue.enqOne(connection.msgproperties(payload=book))
connection.commit()

Dequeuing is done like this:

booksType = connection.gettype("UDT_BOOK")
queue = connection.queue("DEMO_BOOK_QUEUE", booksType)

msg = queue.deqOne()
connection.commit()
print(msg.payload.TITLE) # will print Quick Brown Fox

Changing Queue and Message Options

Refer to the cx_Oracle AQ API and
Oracle Advanced Queuing documentation [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=ADQUE] for details
on all of the enqueue and dequeue options available.

Enqueue options can be set. For example, to make it so that an explicit
call to commit() on the connection is not needed to commit
messages:

queue = connection.queue("DEMO_RAW_QUEUE")
queue.enqOptions.visibility = cx_Oracle.ENQ_IMMEDIATE

Dequeue options can also be set. For example, to specify not to block on
dequeuing if no messages are available:

queue = connection.queue("DEMO_RAW_QUEUE")
queue.deqOptions.wait = cx_Oracle.DEQ_NO_WAIT

Message properties can be set when enqueuing. For example, to set an
expiration of 60 seconds on a message:

queue.enqOne(connection.msgproperties(payload="Message", expiration=60))

This means that if no dequeue operation occurs within 60 seconds that the
message will be dropped from the queue.

Bulk Enqueue and Dequeue

The Queue.enqMany() and Queue.deqMany() methods can be used for
efficient bulk message handling.

Queue.enqMany() is similar to Queue.enqOne() but accepts an
array of messages:

messages = [
 "The first message",
 "The second message",
 "The third message",
]
queue = connection.queue("DEMO_RAW_QUEUE")
queue.enqMany(connection.msgproperties(payload=m) for m in messages)
connection.commit()

Warning: calling Queue.enqMany() in parallel on different connections
acquired from the same pool may fail due to Oracle bug 29928074. Ensure that
this function is not run in parallel, use standalone connections or connections
from different pools, or make multiple calls to Queue.enqOne() instead.
The function Queue.deqMany() call is not affected.

To dequeue multiple messages at one time, use Queue.deqMany(). This
takes an argument specifying the maximum number of messages to dequeue at one
time:

for m in queue.deqMany(maxMessages=10):
 print(m.payload.decode(connection.encoding))

Depending on the queue properties and the number of messages available to
dequeue, this code will print out from zero to ten messages.

Continuous Query Notification

Continuous Query Notification (CQN) [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-373BAF72-3E63-42FE-8BEA-8A2AEFBF1C35] allows applications to receive
notifications when a table changes, such as when rows have been updated,
regardless of the user or the application that made the change. This can be
useful in many circumstances, such as near real-time monitoring, auditing
applications, or for such purposes as mid-tier cache invalidation. A cache
might hold some values that depend on data in a table. If the data in the
table changes, the cached values must then be updated with the new information.

CQN notification behavior is widely configurable. Choices include specifying
what types of SQL should trigger a notification, whether notifications should
survive database loss, and control over unsubscription. You can also choose
whether notification messages will include ROWIDs of affected rows.

By default, object-level (previously known as Database Change Notification)
occurs and the Python notification method is invoked whenever a database
transaction is committed that changes an object that a registered query
references, regardless of whether the actual query result changed. However if
the subscription option qos is
cx_Oracle.SUBSCR_QOS_QUERY then query-level notification occurs. In
this mode, the database notifies the application whenever a transaction changing
the result of the registered query is committed.

CQN is best used to track infrequent data changes.

Requirements

Before using CQN, users must have appropriate permissions:

GRANT CHANGE NOTIFICATION TO <user-name>;

To use CQN, connections must have events mode set to True, for
example:

connection = cx_Oracle.connect(userName, password, "dbhost.example.com/orclpdb1", events=True)

For notifications to be received, the database must be able to connect back to
the application using cx_Oracle. Typically, this means that the machine
running cx_Oracle needs a fixed IP address. Note
Connection.subscribe() does not verify that this reverse connection is
possible. If there is any problem sending a notification, then the callback
method will not be invoked. Configuration options can include an IP address
and port on which to listen for notifications; otherwise, the database chooses
values on its own.

Creating a Subscription

Subscriptions allow Python to receives notifications for events that take place
in the database that match the given parameters.

For example, a basic CQN subscription might be created like:

connection.subscribe(namespace=cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE,
 callback=MyCallback)

See Connection.subscribe() for details on all of the parameters.

See Operation Codes for the types of operations that are supported.

See Subscription Quality of Service for the quality of service values that are supported.

See Subscription Namespaces and Subscription Protocols for the namespaces and
protocols that are supported.

See Subscription Object for more details on the subscription object that is
created.

Registering Queries

Once a subscription has been created, one or more queries must be registered by
calling Subscription.registerquery(). Registering a query behaves
similarly to Cursor.execute(), but only queries are permitted and the
args parameter must be a sequence or dictionary.

An example script to receive query notifications when the ‘CUSTOMER’ table data
changes is:

def CQNCallback(message):
 print("Notification:")
 for query in message.queries:
 for tab in query.tables:
 print("Table:", tab.name)
 print("Operation:", tab.operation)
 for row in tab.rows:
 if row.operation & cx_Oracle.OPCODE_INSERT:
 print("INSERT of rowid:", row.rowid)
 if row.operation & cx_Oracle.OPCODE_DELETE:
 print("DELETE of rowid:", row.rowid)

subscr = connection.subscribe(namespace=cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE,
 callback=CQNCallback,
 operations=cx_Oracle.OPCODE_INSERT | cx_Oracle.OPCODE_DELETE,
 qos = cx_Oracle.SUBSCR_QOS_QUERY | cx_Oracle.SUBSCR_QOS_ROWIDS)
subscr.registerquery("select * from regions")
input("Hit enter to stop CQN demo\n")

Running the above script, shows the initial output as:

Hit enter to stop CQN demo

Use SQL*Plus or another tool to commit a change to the table:

insert into regions values(120, 'L');
commit;

When the commit is executed, a notification will be received by the callback
which should print something like the following:

Hit enter to stop CQN demo
Notification:
Table: HR.REGIONS
Operation: 2
INSERT of rowid: AAA7EsAAHAAAFS/AAA

See GitHub Samples [https://github.com/oracle/python-cx_Oracle/blob/master/samples/CQN.py]
for a runnable CQN example.

Transaction Management

A database transaction is a grouping of SQL statements that make a logical data
change to the database.

When Cursor.execute() executes a SQL statement, a transaction is
started or continued. By default, cx_Oracle does not commit this transaction
to the database. The methods Connection.commit() and
Connection.rollback() methods can be used to explicitly commit
or rollback a transaction:

cursor.execute("INSERT INTO mytab (name) VALUES ('John')")
connection.commit()

When a database connection is closed, such as with Connection.close(),
or when variables referencing the connection go out of scope, any uncommitted
transaction will be rolled back.

Autocommitting

An alternative way to commit is to set the attribute
autocommit of the connection to True. This ensures all
DML statements (INSERT, UPDATE etc) are committed as they are
executed. Unlike Connection.commit(), this does not require an
additional round-trip to the database so it is more efficient when used
appropriately.

Note that irrespective of the autocommit value, Oracle Database will always
commit an open transaction when a DDL statement is executed.

When executing multiple DML statements that constitute a single transaction, it
is recommended to use autocommit mode only for the last DML statement in the
sequence of operations. Unnecessarily committing causes extra database load,
and can destroy transactional consistency.

The example below shows a new customer being added to the table CUST_TABLE.
The corresponding SALES table is updated with a purchase of 3000 pens from
the customer. The final insert uses autocommit mode to commit both new
records:

Add a new customer
idVar = cursor.var(int)
connection.autocommit = False # make sure any previous value is off
cursor.execute("""
 INSERT INTO cust_table (name) VALUES ('John')
 RETURNING id INTO :bvid""", bvid=idVar)

Add sales data for the new customer and commit all new values
idVal = idVar.getvalue()[0]
connection.autocommit = True
cursor.execute("INSERT INTO sales_table VALUES (:bvid, 'pens', 3000)",
 bvid=idVal)

Explicit Transactions

The method Connection.begin() can be used to explicitly start a local
or global transaction.

Without parameters, this explicitly begins a local transaction; otherwise, this
explicitly begins a distributed (global) transaction with the given parameters.
See the Oracle documentation for more details.

Note that in order to make use of global (distributed) transactions, the
attributes Connection.internal_name and
Connection.external_name attributes must be set.

Characters Sets and National Language Support (NLS)

Data fetched from, and sent to, Oracle Database will be mapped between the
database character set and the “Oracle client” character set of the Oracle
client libraries used by cx_Oracle. If data cannot be correctly mapped between
client and server character sets, then it may be corrupted or queries may fail
with “codec can’t decode byte”. Most applications will need
to specify the client character set.

cx_Oracle uses Oracle’s National Language Support (NLS) to assist in
globalizing applications. As well as character set support, there are many
other features that will be useful in applications. See the
Database Globalization Support Guide [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=NLSPG].

Setting the Client Character Set

You can specify the Oracle client character set used by cx_Oracle by passing the
encoding and nencoding parameters to the cx_Oracle.connect() and
cx_Oracle.SessionPool() methods. For example:

import cx_Oracle
connection = cx_Oracle.connect(connectString, encoding="UTF-8",
 nencoding="UTF-8")

The encoding parameter affects character data such as VARCHAR2 and CLOB
columns. The nencoding parameter affects “National Character” data such as
NVARCHAR2 and NCLOB. If you are not using national character types, then you
can omit nencoding.

cx_Oracle will first treat the encoding parameter values as IANA encoding names [https://www.iana.org/assignments/character-sets/character-sets.xhtml]. If
no name is matched, it will attempt to use Oracle character set names [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-9529D1B5-7366-4195-94B5-0F90F3B472E1]. For
example, for UTF-8 characters you should use the IANA name “UTF-8” or the
Oracle name “AL32UTF8”. Do not accidentally use “UTF8”, which Oracle uses to
specify the older Unicode 3.0 Universal character set, CESU-8.

An alternative to setting the encoding parameters is to set Oracle’s
NLS_LANG environment variable to a value such as
AMERICAN_AMERICA.AL32UTF8. See Setting environment variables. As well as setting the character set, the NLS_LANG environment
variable lets you specify the Language (AMERICAN in this example) and
Territory (AMERICA) used for NLS globalization. See Choosing a Locale with
the NLS_LANG Environment Variable [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-86A29834-AE29-4BA5-8A78-E19C168B690A].

A character set specified by an encoding parameter will override the
character set in NLS_LANG. The language and territory components will still
be used by Oracle.

If the NLS_LANG environment variable is set in the application with
os.environ['NLS_LANG'], it must be set before any connection pool is created,
or before any standalone connections are created.

Other Oracle globalization variable can also be set, see Setting NLS Parameters [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-6475CA50-6476-4559-AD87-35D431276B20].

Character Set Example

The script below tries to display data containing a Euro symbol from the
database. The NLS_LANG environment variable on the operating system is set
to AMERICAN_AMERICA.WE8ISO8859P1:

connection = cx_Oracle.connect(userName, password, "dbhost.example.com/orclpdb1")
cursor = connection.cursor()
for row in cursor.execute("select * from nchar_test"):
 print(row)
print(connection.encoding)
print(connection.nencoding)

Because the ‘€’ symbol is not supported by the WE8ISO8859P1 character set,
all ‘€’ characters are replaced by ‘¿’ in the cx_Oracle output:

('¿', 'test ', 'test', 'test ')
('¿', 'test ', '¿', 'test ')
('"nvarchar"', '/"nchar" ', 'varchardata', 'chardata ')
('°', 'Second ', 'Third', 'Fourth ')
ISO-8859-1
ISO-8859-1

When the encoding parameter is set during connection:

connection = cx_Oracle.connect(userName, password, "dbhost.example.com/orclpdb1",
 encoding="UTF-8", nencoding="UTF-8")

Then the output displays the Euro symbol as desired:

('€', 'test ', 'test', 'test ')
('€', 'test ', '€', 'test ')
('"nvarchar"', '/"nchar" ', 'varchardata', 'chardata ')
('°', 'Second ', 'Third', 'Fourth ')
UTF-8
UTF-8

Finding the Database and Client Character Set

To find the database character set, execute the query:

SELECT value AS db_charset
FROM nls_database_parameters
WHERE parameter = 'NLS_CHARACTERSET';

To find the current “client” character set used by cx_Oracle, execute the
query:

SELECT DISTINCT client_charset AS client_charset
FROM v$session_connect_info
WHERE sid = SYS_CONTEXT('USERENV', 'SID');

If these character sets do not match, characters will be mapped when
transferred over Oracle Net. This may impact performance and may result in
invalid data.

High Availability with cx_Oracle

Applications can utilize many features for high availability (HA) during planned and
unplanned outages in order to:

	Reduce application downtime

	Eliminate compromises between high availability and performance

	Increase operational productivity

General HA Recommendations

General recommendations for creating highly available cx_Oracle programs are:

	Tune operating system and Oracle Network parameters to avoid long TCP timeouts, to prevent firewalls killing connections, and to avoid connection storms.

	Implement application error handling and recovery.

	Use the most recent version of the Oracle client libraries. New versions have improvements to features such as dead database server detection, and make it easier to set connection options.

	Use the most recent version of Oracle Database. New database versions introduce, and enhance, features such as Application Continuity (AC) and Transparent Application Continuity (TAC).

	Utilize Oracle Database technologies such as RAC [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=RACAD] or standby databases.

	Configure database services to emit FAN events.

	Use a connection pool, because pools can handle database events and take proactive and corrective action for draining, run time load balancing, and fail over. Set the minimum and maximum pool sizes to the same values to avoid connection storms. Remove resource manager or user profiles that prematurely close sessions.

	Test all scenarios thoroughly.

Network Configuration

The operating system TCP and Oracle Net configuration
should be configured for performance and availability.

Options such as SQLNET.CONNECT_TIMEOUT [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-F20C5DC5-C2FC-4145-9E4E-345CCB8148C7],
SQLNET.RECV_TIMEOUT [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-4A19D81A-75F0-448E-B271-24E5187B5909]
and SQLNET.SEND_TIMEOUT [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-48547756-9C0B-4D14-BE85-E7ADDD1A3A66]
can be explored.

Oracle Net Services [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=NETRF] options may
also be useful for high availability and performance tuning. For example the
database’s listener.ora file can have RATE_LIMIT [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-F302BF91-64F2-4CE8-A3C7-9FDB5BA6DCF8]
and QUEUESIZE [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-FF87387C-1779-4CC3-932A-79BB01391C28]
parameters that can help handle connection storms.

When cx_Oracle uses Oracle Client libraries 19c, then the
Easy Connect Plus syntax syntax enables some options to be
used without needing a sqlnet.ora file. For example, if your firewall times
out every 4 minutes, and you cannot alter the firewall settings, then you may
decide to use EXPIRE_TIME in your connect string to send a probe every 2
minutes to the database to keep connections ‘alive’:

connection = cx_Oracle.connect("hr", userpwd, "dbhost.example.com/orclpdb1?expire_time=2")

Fast Application Notification (FAN)

Users of Oracle Database FAN [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-F3FBE48B-468B-4393-8B0C-D5C8E0E4374D]
must connect to a FAN-enabled database service. The application should have
events set to True when connecting. This value can also be changed via
Oracle Client Configuration.

FAN support is useful for planned and unplanned outages. It provides immediate
notification to cx_Oracle following outages related to the database, computers,
and networks. Without FAN, cx_Oracle can hang until a TCP timeout occurs and an
error is returned, which might be several minutes.

FAN allows cx_Oracle to provide high availability features without the
application being aware of an outage. Unused, idle connections in a
connection pool will be automatically cleaned up. A future
SessionPool.acquire() call will establish a fresh connection to a
surviving database instance without the application being aware of any service
disruption.

To handle errors that affect active connections, you can add application logic
to re-connect (this will connect to a surviving database instance) and replay
application logic without having to return an error to the application user.

FAN benefits users of Oracle Database’s clustering technology Oracle RAC [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-D04AA2A7-2E68-4C5C-BD6E-36C62427B98E]
because connections to surviving database instances can be immediately made.
Users of Oracle’s Data Guard with a broker will get FAN events generated when
the standby database goes online. Standalone databases will send FAN events
when the database restarts.

For a more information on FAN see the white paper on Fast Application
Notification [http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/learnmore/fastapplicationnotification12c-2538999.pdf].

Application Continuity (AC)

Oracle Application Continuity and Transparent Application Continuity are Oracle
Database technologies that record application interaction with the database and,
in the event of a database instance outage, attempt to replay the interaction on
a surviving database instance. If successful, users will be unaware of any
database issue.

When AC or TAC are configured on the database service, they are transparently
available to cx_Oracle applications.

You must thoroughly test your application because not all lower level calls in
the the cx_Oracle implementation can be replayed.

See OCI and Application Continuity [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-A8DD9422-2F82-42A9-9555-134296416E8F]
for more information.

Transaction Guard

cx_Oracle supports Transaction Guard [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-A675AF7B-6FF0-460D-A6E6-C15E7C328C8F] which enables Python
application to verify the success or failure of the last transaction in the
event of an unplanned outage. This feature is available when both client and
database are 12.1 or higher.

Using Transaction Guard helps to:

	Preserve the commit outcome

	Ensure a known outcome for every transaction

See Oracle Database Development Guide [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-6C5880E5-C45F-4858-A069-A28BB25FD1DB] for more information about
using Transaction Guard.

When an error occurs during commit, the Python application can acquire the
logical transaction id (ltxid) from the connection and then call a
procedure to determine the outcome of the commit for this logical transaction
id.

Follow the steps below to use the Transaction Guard feature in Python:

	Grant execute privileges to the database users who will be checking the
outcome of the commit. Login as SYSDBA and run the following command:

GRANT EXECUTE ON DBMS_APP_CONT TO <username>;

	Create a new service by executing the following PL/SQL block as SYSDBA.
Replace the <service-name>, <network-name> and
<retention-value> values with suitable values. It is important that the
COMMIT_OUTCOME parameter be set to true for Transaction Guard to
function properly.

DECLARE
 t_Params dbms_service.svc_parameter_array;
BEGIN
 t_Params('COMMIT_OUTCOME') := 'true';
 t_Params('RETENTION_TIMEOUT') := <retention-value>;
 DBMS_SERVICE.CREATE_SERVICE('<service-name>', '<network-name>', t_Params);
END;
/

	Start the service by executing the following PL/SQL block as SYSDBA:

BEGIN
 DBMS_SERVICE.start_service('<service-name>');
END;
/

Ensure the service is running by examining the output of the following query:

SELECT name, network_name FROM V$ACTIVE_SERVICES ORDER BY 1;

Python Application code requirements to use Transaction Guard

In the Python application code:

	Use the connection attribute ltxid to determine the
logical transaction id.

	Call the DBMS_APP_CONT.GET_LTXID_OUTCOME PL/SQL procedure with the
logical transaction id acquired from the connection attribute. This returns
a boolean value indicating if the last transaction was committed and whether
the last call was completed successfully or not.

See the Transaction Guard Sample [https://github.com/oracle/python-cx_Oracle/blob/master/samples/TransactionGuard.py] for further details.

Tracing SQL and PL/SQL Statements

Subclass Connections

Subclassing enables applications to add “hooks” for connection and statement
execution. This can be used to alter, or log, connection and execution
parameters, and to extend cx_Oracle functionality.

The example below demonstrates subclassing a connection to log SQL execution
to a file. This example also shows how connection credentials can be embedded
in the custom subclass, so application code does not need to supply them.

class Connection(cx_Oracle.Connection):
 logFileName = "log.txt"

 def __init__(self):
 connectString = "hr/hr_password@dbhost.example.com/orclpdb1"
 self._log("Connect to the database")
 return super(Connection, self).__init__(connectString)

 def _log(self, message):
 with open(self.logFileName, "a") as f:
 print(message, file=f)

 def execute(self, sql, parameters):
 self._log(sql)
 cursor = self.cursor()
 try:
 return cursor.execute(sql, parameters)
 except cx_Oracle.Error as e:
 errorObj, = e.args
 self._log(errorObj.message)

connection = Connection()
connection.execute("""
 select department_name
 from departments
 where department_id = :id""", dict(id=270))

The messages logged in log.txt are:

Connect to the database

 select department_name
 from departments
 where department_id = :id

If an error occurs, perhaps due to a missing table, the log file would contain
instead:

Connect to the database

 select department_name
 from departments
 where department_id = :id
ORA-00942: table or view does not exist

In production applications be careful not to log sensitive information.

See Subclassing.py [https://github.com/oracle/python-cx_Oracle/blob/master/samples/Subclassing.py] for an example.

Oracle Database End-to-End Tracing

Oracle Database End-to-end application tracing simplifies diagnosing application
code flow and performance problems in multi-tier or multi-user environments.

The connection attributes, client_identifier,
clientinfo, dbop,
module and action, set the metadata for
end-to-end tracing. You can use data dictionary and V$ views to monitor
tracing or use other application tracing utilities.

The attributes are sent to the database when the next round-trip to the
database occurs, for example when the next SQL statement is executed.

The attribute values will remain set in connections released back to connection
pools. When the application re-acquires a connection from the pool it should
initialize the values to a desired state before using that connection.

The example below shows setting the action, module and client identifier
attributes on the connection object:

Set the tracing metadata
connection.client_identifier = "pythonuser"
connection.action = "Query Session tracing parameters"
connection.module = "End-to-end Demo"

for row in cursor.execute("""
 SELECT username, client_identifier, module, action
 FROM V$SESSION
 WHERE username = 'SYSTEM'"""):
 print(row)

The output will be:

('SYSTEM', 'pythonuser', 'End-to-end Demo', 'Query Session tracing parameters')

The values can also be manually set as shown by calling
DBMS_APPLICATION_INFO procedures [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-14484F86-44F2-4B34-B34E-0C873D323EAD]
or DBMS_SESSION.SET_IDENTIFIER [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-988EA930-BDFE-4205-A806-E54F05333562]. These incur round-trips to
the database, however, reducing scalability.

BEGIN
 DBMS_SESSION.SET_IDENTIFIER('pythonuser');
 DBMS_APPLICATION_INFO.set_module('End-to-End Demo');
 DBMS_APPLICATION_INFO.set_action(action_name => 'Query Session tracing parameters');
END;

Low Level SQL Tracing in cx_Oracle

cx_Oracle is implemented using the ODPI-C [https://oracle.github.io/odpi]
wrapper on top of the Oracle Client libraries. The ODPI-C tracing capability
can be used to log executed cx_Oracle statements to the standard error stream.
Before executing Python, set the environment variable DPI_DEBUG_LEVEL to
16.

At a Windows command prompt, this could be done with:

set DPI_DEBUG_LEVEL=16

On Linux, you might use:

export DPI_DEBUG_LEVEL=16

After setting the variable, run the Python Script, for example on Linux:

python end-to-endtracing.py 2> log.txt

For an application that does a single query, the log file might contain a
tracing line consisting of the prefix ‘ODPI’, a thread identifier, a timestamp,
and the SQL statement executed:

ODPI [26188] 2019-03-26 09:09:03.909: ODPI-C 3.1.1
ODPI [26188] 2019-03-26 09:09:03.909: debugging messages initialized at level 16
ODPI [26188] 2019-03-26 09:09:09.917: SQL SELECT * FROM jobss
Traceback (most recent call last):
File "end-to-endtracing.py", line 14, in <module>
 cursor.execute("select * from jobss")
cx_Oracle.DatabaseError: ORA-00942: table or view does not exist

See ODPI-C Debugging [https://oracle.github.io/odpi/doc/user_guide/debugging.html] for
documentation on DPI_DEBUG_LEVEL.

Module Interface

	
cx_Oracle.__future__

	Special object which contains attributes which control the behavior of
cx_Oracle, allowing for opting in for new features. No attributes are
currently supported so all attributes will silently ignore being set and
will always appear to have the value None.

Note

This method is an extension to the DB API definition.

New in version 6.2.

	
cx_Oracle.Binary(string)

	Construct an object holding a binary (long) string value.

	
cx_Oracle.clientversion()

	Return the version of the client library being used as a 5-tuple. The five
values are the major version, minor version, update number, patch number
and port update number.

Note

This method is an extension to the DB API definition.

	
cx_Oracle.connect(user=None, password=None, dsn=None, mode=cx_Oracle.DEFAULT_AUTH, handle=0, pool=None, threaded=False, events=False, cclass=None, purity=cx_Oracle.ATTR_PURITY_DEFAULT, newpassword=None, encoding=None, nencoding=None, edition=None, appcontext=[], tag=None, matchanytag=None, shardingkey=[], supershardingkey=[])

	
cx_Oracle.Connection(user=None, password=None, dsn=None, mode=cx_Oracle.DEFAULT_AUTH, handle=0, pool=None, threaded=False, events=False, cclass=None, purity=cx_Oracle.ATTR_PURITY_DEFAULT, newpassword=None, encoding=None, nencoding=None, edition=None, appcontext=[], tag=None, matchanytag=False, shardingkey=[], supershardingkey=[])

	Constructor for creating a connection to the database. Return a
connection object. All parameters are optional and can be
specified as keyword parameters. See Connecting to Oracle Database information about
connections.

The dsn (data source name) is the TNS entry (from the Oracle names server
or tnsnames.ora file) or is a string like the one returned from
makedsn(). If only one parameter is passed, a connect
string is assumed which is to be of the format user/password@dsn, the
same format accepted by Oracle applications such as SQL*Plus. See
Connection Strings for more information.

If the mode is specified, it must be one of the
connection authorization modes
which are defined at the module level.

If the handle is specified, it must be of type OCISvcCtx* and is only of
use when embedding Python in an application (like PowerBuilder) which has
already made the connection.

The pool parameter is expected to be a
session pool object and the use of this parameter is the
equivalent of calling SessionPool.acquire(). Parameters not
accepted by that method are ignored.

The threaded parameter is expected to be a boolean expression which
indicates whether or not Oracle should wrap accesses to connections with a
mutex. Doing so in single threaded applications imposes a performance
penalty of about 10-15% which is why the default is False.

The events parameter is expected to be a boolean expression which indicates
whether or not to initialize Oracle in events mode. This is required for
continuous query notification and high availability event notifications.

The cclass parameter is expected to be a string and defines the connection
class for database resident connection pooling (DRCP).

The purity parameter is expected to be one of
ATTR_PURITY_NEW, ATTR_PURITY_SELF, or
ATTR_PURITY_DEFAULT.

The newpassword parameter is expected to be a string if specified and sets
the password for the logon during the connection process.

The encoding parameter is expected to be one of the
Python standard encodings [https://docs.python.org/3/library/codecs.html#standard-encodings]
such as ‘UTF-8’, if specified, and sets the encoding to use for regular
database strings. If not specified, the Oracle environment variable
NLS_LANG is used and the Oracle character set is translated to one of the
standard encodings, if possible. If the Oracle environment variable
NLS_LANG is not set, ASCII is used.

The nencoding parameter is expected to be one of the
Python standard encodings [https://docs.python.org/3/library/codecs.html#standard-encodings]
such as ‘UTF-8’, if specified, and sets the encoding to use for national
character set database strings. If not specified, the Oracle environment
variable NLS_NCHAR is used and the Oracle character set is translated to
one of the standard encodings, if possible. If the Oracle environment
variable NLS_NCHAR is not used, the Oracle environment variable NLS_LANG is
used instead, and if the Oracle environment variable NLS_LANG is not set,
ASCII is used.

The edition parameter is expected to be a string if specified and sets the
edition to use for the session. It is only relevant if both the client and
the database are at least Oracle Database 11.2. If this parameter is used
with the cclass parameter the exception “DPI-1058: edition not supported
with connection class” will be raised.

The appcontext parameter is expected to be a list of 3-tuples, if specified,
and sets the application context for the connection. Application context
is available in the database by using the sys_context() PL/SQL method and
can be used within a logon trigger as well as any other PL/SQL procedures.
Each entry in the list is expected to contain three strings: the namespace,
the name and the value.

The tag parameter, if specified, is expected to be a string and will limit
the sessions that can be returned from a session pool unless the
matchanytag parameter is set to True. In that case sessions with the
specified tag will be preferred over others, but if no such sessions are
available a session with a different tag may be returned instead. In any
case, untagged sessions will always be returned if no sessions with the
specified tag are available. Sessions are tagged when they are
released back to the pool.

The shardingkey and supershardingkey parameters, if specified, are expected
to be a sequence of values which will be used to identify the database
shard to connect to. Currently only strings are supported for the key
values.

	
cx_Oracle.Cursor(connection)

	Constructor for creating a cursor. Return a new
cursor object using the connection.

Note

This method is an extension to the DB API definition.

	
cx_Oracle.Date(year, month, day)

	Construct an object holding a date value.

	
cx_Oracle.DateFromTicks(ticks)

	Construct an object holding a date value from the given ticks value (number
of seconds since the epoch; see the documentation of the standard Python
time module for details).

	
cx_Oracle.makedsn(host, port, sid=None, service_name=None, region=None, sharding_key=None, super_sharding_key=None)

	Return a string suitable for use as the dsn parameter for
connect(). This string is identical to the strings that
are defined by the Oracle names server or defined in the tnsnames.ora file.

Note

This method is an extension to the DB API definition.

	
cx_Oracle.SessionPool(user=None, password=None, dsn=None, min=1, max=2, increment=1, connectiontype=cx_Oracle.Connection, threaded=False, getmode=cx_Oracle.SPOOL_ATTRVAL_NOWAIT, events=False, homogeneous=True, externalauth=False, encoding=None, nencoding=None, edition=None, timeout=0, waitTimeout=0, maxLifetimeSession=0, sessionCallback=None)

	Create and return a session pool object.
Connection pooling in cx_Oracle is handled by Oracle’s
Session pooling [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-F9662FFB-EAEF-495C-96FC-49C6D1D9625C]
technology. This allows cx_Oracle applications to support features
like Application Continuity [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-A8DD9422-2F82-42A9-9555-134296416E8F].

See Connection Pooling for information on connection pooling.

Session pooling creates a pool of available connections to the
database, allowing applications to acquire a connection very quickly.
It is of primary use in a server where connections are requested
in rapid succession and used for a short period of time, for example in a
web server.

If the connection type is specified, all calls to
acquire() will create connection objects of that type,
rather than the base type defined at the module level.

The threaded parameter is expected to be a boolean expression which
indicates whether Oracle should wrap accesses to connections with a mutex.
Doing so in single threaded applications imposes a performance penalty of
about 10-15% which is why the default is False.

The events parameter is expected to be a boolean expression which indicates
whether or not to initialize Oracle in events mode. This is required for
continuous query notification and high availability event notifications.

The homogeneous parameter is expected to be a boolean expression which
indicates whether or not to create a homogeneous pool. A homogeneous pool
requires that all connections in the pool use the same credentials. As such
proxy authentication and external authentication is not possible with a
homogeneous pool.

The externalauth parameter is expected to be a boolean expression which
indicates whether or not external authentication should be used. External
authentication implies that something other than the database is
authenticating the user to the database. This includes the use of operating
system authentication and Oracle wallets.

The encoding parameter is expected to be one of the
Python standard encodings [https://docs.python.org/3/library/codecs.html#standard-encodings]
such as ‘UTF-8’, if specified, and sets the encoding to use for regular
database strings. If not specified, the Oracle environment variable
NLS_LANG is used and the Oracle character set is translated to one of the
standard encodings, if possible. If the Oracle environment variable
NLS_LANG is not set, ASCII is used.

The nencoding parameter is expected to be one of the
Python standard encodings [https://docs.python.org/3/library/codecs.html#standard-encodings]
such as ‘UTF-8’, if specified, and sets the encoding to use for national
character set database strings. If not specified, the Oracle environment
variable NLS_NCHAR is used and the Oracle character set is translated to
one of the standard encodings, if possible. If the Oracle environment
variable NLS_NCHAR is not used, the Oracle environment variable NLS_LANG is
used instead, and if the Oracle environment variable NLS_LANG is not set,
ASCII is used.

The edition parameter is expected to be a string, if specified, and sets
the edition to use for the sessions in the pool. It is only relevant if
both the client and the server are at least Oracle Database 11.2.

The timeout parameter is expected to be an integer, if specified, and sets
the length of time (in seconds) after which idle sessions in the pool are
terminated. Note that termination only occurs when the pool is accessed.
The default value of 0 means that no idle sessions are terminated.

The waitTimeout parameter is expected to be an integer, if specified, and
sets the length of time (in milliseconds) that the caller should wait for
a session to become available in the pool before returning with an error.
This value is only used if the getmode parameter is set to the value
cx_Oracle.SPOOL_ATTRVAL_TIMEDWAIT.

The maxLifetimeSession parameter is expected to be an integer, if
specified, and sets the maximum length of time (in seconds) a pooled
session may exist. Sessions that are in use will not be closed. They become
candidates for termination only when they are released back to the pool and
have existed for longer than maxLifetimeSession seconds. Note that
termination only occurs when the pool is accessed. The default value is 0
which means that there is no maximum length of time that a pooled session
may exist.

The sessionCallback parameter is expected to be either a string or a
callable. If the parameter is a string, this refers to a PL/SQL procedure
that will be called when SessionPool.acquire() requests a tag and
that tag does not match the connection’s actual tag. Support for the PL/SQL
procedure requires Oracle Client libraries 12.2 or later. See the
OCI documentation [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-B853A020-752F-494A-8D88-D0396EF57177] for more
information. If the sessionCallback parameter is a callable, however, it
will be called when a newly created connection is returned from the pool
or when a tag is requested and that tag does not match the connection’s
actual tag. The callable will be invoked with the connection and the
requested tag as its only parameters.

Note

This method is an extension to the DB API definition.

	
cx_Oracle.Time(hour, minute, second)

	Construct an object holding a time value.

Note

The time only data type is not supported by Oracle. Calling this
function will raise a NotSupportedError exception.

	
cx_Oracle.TimeFromTicks(ticks)

	Construct an object holding a time value from the given ticks value (number
of seconds since the epoch; see the documentation of the standard Python
time module for details).

Note

The time only data type is not supported by Oracle. Calling this
function will raise a NotSupportedError exception.

	
cx_Oracle.Timestamp(year, month, day, hour, minute, second)

	Construct an object holding a time stamp value.

	
cx_Oracle.TimestampFromTicks(ticks)

	Construct an object holding a time stamp value from the given ticks value
(number of seconds since the epoch; see the documentation of the standard
Python time module for details).

Constants

General

	
cx_Oracle.apilevel

	String constant stating the supported DB API level. Currently ‘2.0’.

	
cx_Oracle.buildtime

	String constant stating the time when the binary was built.

Note

This constant is an extension to the DB API definition.

	
cx_Oracle.paramstyle

	String constant stating the type of parameter marker formatting expected by
the interface. Currently ‘named’ as in ‘where name = :name’.

	
cx_Oracle.threadsafety

	Integer constant stating the level of thread safety that the interface
supports. Currently 2, which means that threads may share the module and
connections, but not cursors. Sharing means that a thread may use a
resource without wrapping it using a mutex semaphore to implement resource
locking.

Note that in order to make use of multiple threads in a program which
intends to connect and disconnect in different threads, the threaded
parameter to connect() or SessionPool() must be true.

	
cx_Oracle.version

	

	
cx_Oracle.__version__

	String constant stating the version of the module. Currently ‘7.2.3’.

Note

This attribute is an extension to the DB API definition.

Advanced Queuing: Delivery Modes

These constants are extensions to the DB API definition. They are possible
values for the deliverymode attribute of the
dequeue options object passed as the options parameter to
the Connection.deq() method as well as the
deliverymode attribute of the
enqueue options object passed as the options parameter to
the Connection.enq() method. They are also possible values for the
deliverymode attribute of the
message properties object passed as the msgproperties
parameter to the Connection.deq() and Connection.enq() methods.

	
cx_Oracle.MSG_BUFFERED

	This constant is used to specify that enqueue/dequeue operations should
enqueue or dequeue buffered messages.

	
cx_Oracle.MSG_PERSISTENT

	This constant is used to specify that enqueue/dequeue operations should
enqueue or dequeue persistent messages. This is the default value.

	
cx_Oracle.MSG_PERSISTENT_OR_BUFFERED

	This constant is used to specify that dequeue operations should dequeue
either persistent or buffered messages.

Advanced Queuing: Dequeue Modes

These constants are extensions to the DB API definition. They are possible
values for the mode attribute of the
dequeue options object. This object is the options
parameter for the Connection.deq() method.

	
cx_Oracle.DEQ_BROWSE

	This constant is used to specify that dequeue should read the message
without acquiring any lock on the message (equivalent to a select
statement).

	
cx_Oracle.DEQ_LOCKED

	This constant is used to specify that dequeue should read and obtain a
write lock on the message for the duration of the transaction (equivalent
to a select for update statement).

	
cx_Oracle.DEQ_REMOVE

	This constant is used to specify that dequeue should read the message and
update or delete it. This is the default value.

	
cx_Oracle.DEQ_REMOVE_NODATA

	This constant is used to specify that dequeue should confirm receipt of the
message but not deliver the actual message content.

Advanced Queuing: Dequeue Navigation Modes

These constants are extensions to the DB API definition. They are possible
values for the navigation attribute of the
dequeue options object. This object is the options
parameter for the Connection.deq() method.

	
cx_Oracle.DEQ_FIRST_MSG

	This constant is used to specify that dequeue should retrieve the first
available message that matches the search criteria. This resets the
position to the beginning of the queue.

	
cx_Oracle.DEQ_NEXT_MSG

	This constant is used to specify that dequeue should retrieve the next
available message that matches the search criteria. If the previous message
belongs to a message group, AQ retrieves the next available message that
matches the search criteria and belongs to the message group. This is the
default.

	
cx_Oracle.DEQ_NEXT_TRANSACTION

	This constant is used to specify that dequeue should skip the remainder of
the transaction group and retrieve the first message of the next
transaction group. This option can only be used if message grouping is
enabled for the current queue.

Advanced Queuing: Dequeue Visibility Modes

These constants are extensions to the DB API definition. They are possible
values for the visibility attribute of the
dequeue options object. This object is the options
parameter for the Connection.deq() method.

	
cx_Oracle.DEQ_IMMEDIATE

	This constant is used to specify that dequeue should perform its work as
part of an independent transaction.

	
cx_Oracle.DEQ_ON_COMMIT

	This constant is used to specify that dequeue should be part of the current
transaction. This is the default value.

Advanced Queuing: Dequeue Wait Modes

These constants are extensions to the DB API definition. They are possible
values for the wait attribute of the
dequeue options object. This object is the options
parameter for the Connection.deq() method.

	
cx_Oracle.DEQ_NO_WAIT

	This constant is used to specify that dequeue not wait for messages to be
available for dequeuing.

	
cx_Oracle.DEQ_WAIT_FOREVER

	This constant is used to specify that dequeue should wait forever for
messages to be available for dequeuing. This is the default value.

Advanced Queuing: Enqueue Visibility Modes

These constants are extensions to the DB API definition. They are possible
values for the visibility attribute of the
enqueue options object. This object is the options
parameter for the Connection.enq() method.

	
cx_Oracle.ENQ_IMMEDIATE

	This constant is used to specify that enqueue should perform its work as
part of an independent transaction.

	
cx_Oracle.ENQ_ON_COMMIT

	This constant is used to specify that enqueue should be part of the current
transaction. This is the default value.

Advanced Queuing: Message States

These constants are extensions to the DB API definition. They are possible
values for the state attribute of the
message properties object. This object is the
msgproperties parameter for the Connection.deq() and
Connection.enq() methods.

	
cx_Oracle.MSG_EXPIRED

	This constant is used to specify that the message has been moved to the
exception queue.

	
cx_Oracle.MSG_PROCESSED

	This constant is used to specify that the message has been processed and
has been retained.

	
cx_Oracle.MSG_READY

	This constant is used to specify that the message is ready to be processed.

	
cx_Oracle.MSG_WAITING

	This constant is used to specify that the message delay has not yet been
reached.

Advanced Queuing: Other

These constants are extensions to the DB API definition. They are special
constants used in advanced queuing.

	
cx_Oracle.MSG_NO_DELAY

	This constant is a possible value for the delay
attribute of the message properties object passed
as the msgproperties parameter to the Connection.deq() and
Connection.enq() methods. It specifies that no delay should be
imposed and the message should be immediately available for dequeuing. This
is also the default value.

	
cx_Oracle.MSG_NO_EXPIRATION

	This constant is a possible value for the
expiration attribute of the
message properties object passed as the msgproperties
parameter to the Connection.deq() and Connection.enq()
methods. It specifies that the message never expires. This is also the
default value.

Connection Authorization Modes

These constants are extensions to the DB API definition. They are possible
values for the mode parameter of the connect() method.

	
cx_Oracle.DEFAULT_AUTH

	This constant is used to specify that default authentication is to take
place. This is the default value if no mode is passed at all.

New in version 7.2.

	
cx_Oracle.PRELIM_AUTH

	This constant is used to specify that preliminary authentication is to be
used. This is needed for performing database startup and shutdown.

	
cx_Oracle.SYSASM

	This constant is used to specify that SYSASM access is to be acquired.

	
cx_Oracle.SYSBKP

	This constant is used to specify that SYSBACKUP access is to be acquired.

	
cx_Oracle.SYSDBA

	This constant is used to specify that SYSDBA access is to be acquired.

	
cx_Oracle.SYSDGD

	This constant is used to specify that SYSDG access is to be acquired.

	
cx_Oracle.SYSKMT

	This constant is used to specify that SYSKM access is to be acquired.

	
cx_Oracle.SYSOPER

	This constant is used to specify that SYSOPER access is to be acquired.

	
cx_Oracle.SYSRAC

	This constant is used to specify that SYSRAC access is to be acquired.

Database Shutdown Modes

These constants are extensions to the DB API definition. They are possible
values for the mode parameter of the Connection.shutdown() method.

	
cx_Oracle.DBSHUTDOWN_ABORT

	This constant is used to specify that the caller should not wait for
current processing to complete or for users to disconnect from the
database. This should only be used in unusual circumstances since database
recovery may be necessary upon next startup.

	
cx_Oracle.DBSHUTDOWN_FINAL

	This constant is used to specify that the instance can be truly halted.
This should only be done after the database has been shutdown with one of
the other modes (except abort) and the database has been closed and
dismounted using the appropriate SQL commands.

	
cx_Oracle.DBSHUTDOWN_IMMEDIATE

	This constant is used to specify that all uncommitted transactions should
be rolled back and any connected users should be disconnected.

	
cx_Oracle.DBSHUTDOWN_TRANSACTIONAL

	This constant is used to specify that further connections to the database
should be prohibited and no new transactions should be allowed. It then
waits for all active transactions to complete.

	
cx_Oracle.DBSHUTDOWN_TRANSACTIONAL_LOCAL

	This constant is used to specify that further connections to the database
should be prohibited and no new transactions should be allowed. It then
waits for only local active transactions to complete.

Event Types

These constants are extensions to the DB API definition. They are possible
values for the Message.type attribute of the messages that are sent
for subscriptions created by the Connection.subscribe() method.

	
cx_Oracle.EVENT_AQ

	This constant is used to specify that one or more messages are available
for dequeuing on the queue specified when the subscription was created.

	
cx_Oracle.EVENT_DEREG

	This constant is used to specify that the subscription has been
deregistered and no further notifications will be sent.

	
cx_Oracle.EVENT_NONE

	This constant is used to specify no information is available about the
event.

	
cx_Oracle.EVENT_OBJCHANGE

	This constant is used to specify that a database change has taken place on
a table registered with the Subscription.registerquery() method.

	
cx_Oracle.EVENT_QUERYCHANGE

	This constant is used to specify that the result set of a query registered
with the Subscription.registerquery() method has been changed.

	
cx_Oracle.EVENT_SHUTDOWN

	This constant is used to specify that the instance is in the process of
being shut down.

	
cx_Oracle.EVENT_SHUTDOWN_ANY

	This constant is used to specify that any instance (when running RAC) is in
the process of being shut down.

	
cx_Oracle.EVENT_STARTUP

	This constant is used to specify that the instance is in the process of
being started up.

Operation Codes

These constants are extensions to the DB API definition. They are possible
values for the operations parameter for the Connection.subscribe()
method. One or more of these values can be OR’ed together. These values are
also used by the MessageTable.operation or
MessageQuery.operation attributes of the messages that are sent.

	
cx_Oracle.OPCODE_ALLOPS

	This constant is used to specify that messages should be sent for all
operations.

	
cx_Oracle.OPCODE_ALLROWS

	This constant is used to specify that the table or query has been
completely invalidated.

	
cx_Oracle.OPCODE_ALTER

	This constant is used to specify that messages should be sent when a
registered table has been altered in some fashion by DDL, or that the
message identifies a table that has been altered.

	
cx_Oracle.OPCODE_DELETE

	This constant is used to specify that messages should be sent when data is
deleted, or that the message identifies a row that has been deleted.

	
cx_Oracle.OPCODE_DROP

	This constant is used to specify that messages should be sent when a
registered table has been dropped, or that the message identifies a table
that has been dropped.

	
cx_Oracle.OPCODE_INSERT

	This constant is used to specify that messages should be sent when data is
inserted, or that the message identifies a row that has been inserted.

	
cx_Oracle.OPCODE_UPDATE

	This constant is used to specify that messages should be sent when data is
updated, or that the message identifies a row that has been updated.

Session Pool Get Modes

These constants are extensions to the DB API definition. They are possible
values for the getmode parameter of the SessionPool() method.

	
cx_Oracle.SPOOL_ATTRVAL_FORCEGET

	This constant is used to specify that a new connection will be returned if
there are no free sessions available in the pool.

	
cx_Oracle.SPOOL_ATTRVAL_NOWAIT

	This constant is used to specify that an exception should be raised if
there are no free sessions available in the pool. This is the default
value.

	
cx_Oracle.SPOOL_ATTRVAL_WAIT

	This constant is used to specify that the caller should wait until a
session is available if there are no free sessions available in the pool.

	
cx_Oracle.SPOOL_ATTRVAL_TIMEDWAIT

	This constant is used to specify that the caller should wait for a period
of time (defined by the waitTimeout parameter) for a session to become
available before returning with an error.

Session Pool Purity

These constants are extensions to the DB API definition. They are possible
values for the purity parameter of the connect() method, which is used
in database resident connection pooling (DRCP).

	
cx_Oracle.ATTR_PURITY_DEFAULT

	This constant is used to specify that the purity of the session is the
default value identified by Oracle (see Oracle’s documentation for more
information). This is the default value.

	
cx_Oracle.ATTR_PURITY_NEW

	This constant is used to specify that the session acquired from the pool
should be new and not have any prior session state.

	
cx_Oracle.ATTR_PURITY_SELF

	This constant is used to specify that the session acquired from the pool
need not be new and may have prior session state.

Subscription Grouping Classes

These constants are extensions to the DB API definition. They are possible
values for the groupingClass parameter of the Connection.subscribe()
method.

	
cx_Oracle.SUBSCR_GROUPING_CLASS_TIME

	This constant is used to specify that events are to be grouped by the
period of time in which they are received.

Subscription Grouping Types

These constants are extensions to the DB API definition. They are possible
values for the groupingType parameter of the Connection.subscribe()
method.

	
cx_Oracle.SUBSCR_GROUPING_TYPE_SUMMARY

	This constant is used to specify that when events are grouped a summary of
the events should be sent instead of the individual events. This is the
default value.

	
cx_Oracle.SUBSCR_GROUPING_TYPE_LAST

	This constant is used to specify that when events are grouped the last
event that makes up the group should be sent instead of the individual
events.

Subscription Namespaces

These constants are extensions to the DB API definition. They are possible
values for the namespace parameter of the Connection.subscribe()
method.

	
cx_Oracle.SUBSCR_NAMESPACE_AQ

	This constant is used to specify that notifications should be sent when a
queue has messages available to dequeue.

	
cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE

	This constant is used to specify that database change notification or query
change notification messages are to be sent. This is the default value.

Subscription Protocols

These constants are extensions to the DB API definition. They are possible
values for the protocol parameter of the Connection.subscribe() method.

	
cx_Oracle.SUBSCR_PROTO_HTTP

	This constant is used to specify that notifications will be sent to an
HTTP URL when a message is generated. This value is currently not
supported.

	
cx_Oracle.SUBSCR_PROTO_MAIL

	This constant is used to specify that notifications will be sent to an
e-mail address when a message is generated. This value is currently not
supported.

	
cx_Oracle.SUBSCR_PROTO_OCI

	This constant is used to specify that notifications will be sent to the
callback routine identified when the subscription was created. It is the
default value and the only value currently supported.

	
cx_Oracle.SUBSCR_PROTO_SERVER

	This constant is used to specify that notifications will be sent to a
PL/SQL procedure when a message is generated. This value is currently not
supported.

Subscription Quality of Service

These constants are extensions to the DB API definition. They are possible
values for the qos parameter of the Connection.subscribe() method. One
or more of these values can be OR’ed together.

	
cx_Oracle.SUBSCR_QOS_BEST_EFFORT

	This constant is used to specify that best effort filtering for query
result set changes is acceptable. False positive notifications may be
received. This behaviour may be suitable for caching applications.

	
cx_Oracle.SUBSCR_QOS_DEREG_NFY

	This constant is used to specify that the subscription should be
automatically unregistered after the first notification is received.

	
cx_Oracle.SUBSCR_QOS_QUERY

	This constant is used to specify that notifications should be sent if the
result set of the registered query changes. By default no false positive
notifications will be generated.

	
cx_Oracle.SUBSCR_QOS_RELIABLE

	This constant is used to specify that notifications should not be lost in
the event of database failure.

	
cx_Oracle.SUBSCR_QOS_ROWIDS

	This constant is used to specify that the rowids of the inserted, updated
or deleted rows should be included in the message objects that are sent.

Types

	
cx_Oracle.BINARY

	This type object is used to describe columns in a database that contain
binary data. In Oracle this is RAW columns.

	
cx_Oracle.BFILE

	This type object is used to describe columns in a database that are BFILEs.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.BLOB

	This type object is used to describe columns in a database that are BLOBs.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.BOOLEAN

	This type object is used to represent PL/SQL booleans.

New in version 5.2.1.

Note

This type is an extension to the DB API definition. It is only
available in Oracle 12.1 and higher and only within PL/SQL. It cannot
be used in columns.

	
cx_Oracle.CLOB

	This type object is used to describe columns in a database that are CLOBs.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.CURSOR

	This type object is used to describe columns in a database that are cursors
(in PL/SQL these are known as ref cursors).

Note

This type is an extension to the DB API definition.

	
cx_Oracle.DATETIME

	This type object is used to describe columns in a database that are dates.

	
cx_Oracle.FIXED_CHAR

	This type object is used to describe columns in a database that are fixed
length strings (in Oracle these is CHAR columns); these behave differently
in Oracle than varchar2 so they are differentiated here even though the DB
API does not differentiate them.

Note

This attribute is an extension to the DB API definition.

	
cx_Oracle.FIXED_NCHAR

	This type object is used to describe columns in a database that are NCHAR
columns in Oracle; these behave differently in Oracle than nvarchar2 so
they are differentiated here even though the DB API does not differentiate
them.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.INTERVAL

	This type object is used to describe columns in a database that are of type
interval day to second.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.LOB

	This type object is the Python type of BLOB and CLOB data
that is returned from cursors.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.LONG_BINARY

	This type object is used to describe columns in a database that are long
binary (in Oracle these are LONG RAW columns).

Note

This type is an extension to the DB API definition.

	
cx_Oracle.LONG_STRING

	This type object is used to describe columns in a database that are long
strings (in Oracle these are LONG columns).

Note

This type is an extension to the DB API definition.

	
cx_Oracle.NATIVE_FLOAT

	This type object is used to describe columns in a database that are of type
binary_double or binary_float.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.NATIVE_INT

	This type object is used to bind integers using Oracle’s native integer
support, rather than the standard number support.

New in version 5.3.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.NCHAR

	This type object is used to describe national character strings (NVARCHAR2)
in Oracle.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.NCLOB

	This type object is used to describe columns in a database that are NCLOBs.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.NUMBER

	This type object is used to describe columns in a database that are
numbers.

	
cx_Oracle.OBJECT

	This type object is used to describe columns in a database that are
objects.

Note

This type is an extension to the DB API definition.

	
cx_Oracle.ROWID

	This type object is used to describe the pseudo column “rowid”.

	
cx_Oracle.STRING

	This type object is used to describe columns in a database that are strings
(in Oracle this is VARCHAR2 columns).

	
cx_Oracle.TIMESTAMP

	This type object is used to describe columns in a database that are
timestamps.

Note

This attribute is an extension to the DB API definition.

Exceptions

	
exception cx_Oracle.Warning

	Exception raised for important warnings and defined by the DB API but not
actually used by cx_Oracle.

	
exception cx_Oracle.Error

	Exception that is the base class of all other exceptions defined by
cx_Oracle and is a subclass of the Python StandardError exception (defined
in the module exceptions).

	
exception cx_Oracle.InterfaceError

	Exception raised for errors that are related to the database interface
rather than the database itself. It is a subclass of Error.

	
exception cx_Oracle.DatabaseError

	Exception raised for errors that are related to the database. It is a
subclass of Error.

	
exception cx_Oracle.DataError

	Exception raised for errors that are due to problems with the processed
data. It is a subclass of DatabaseError.

	
exception cx_Oracle.OperationalError

	Exception raised for errors that are related to the operation of the
database but are not necessarily under the control of the programmer. It is
a subclass of DatabaseError.

	
exception cx_Oracle.IntegrityError

	Exception raised when the relational integrity of the database is affected.
It is a subclass of DatabaseError.

	
exception cx_Oracle.InternalError

	Exception raised when the database encounters an internal error. It is a
subclass of DatabaseError.

	
exception cx_Oracle.ProgrammingError

	Exception raised for programming errors. It is a subclass of DatabaseError.

	
exception cx_Oracle.NotSupportedError

	Exception raised when a method or database API was used which is not
supported by the database. It is a subclass of DatabaseError.

Exception handling

Note

PEP 249 (Python Database API Specification v2.0) says the following about
exception values:

[…] The values of these exceptions are not defined. They should
give the user a fairly good idea of what went wrong, though. […]

With cx_Oracle every exception object has exactly one argument in the
args tuple. This argument is a cx_Oracle._Error object which has
the following five read-only attributes.

	
_Error.code

	Integer attribute representing the Oracle error number (ORA-XXXXX).

	
_Error.offset

	Integer attribute representing the error offset when applicable.

	
_Error.message

	String attribute representing the Oracle message of the error. This
message is localized by the environment of the Oracle connection.

	
_Error.context

	String attribute representing the context in which the exception was
raised.

	
_Error.isrecoverable

	Boolean attribute representing whether the error is recoverable or not.
This is False in all cases unless Oracle Database 12.1 is being used on
both the server and the client.

New in version 5.3.

This allows you to use the exceptions for example in the following way:

from __future__ import print_function

import cx_Oracle

connection = cx_Oracle.connect("cx_Oracle/dev@localhost/orclpdb1")
cursor = connection.cursor()

try:
 cursor.execute("select 1 / 0 from dual")
except cx_Oracle.DatabaseError as exc:
 error, = exc.args
 print("Oracle-Error-Code:", error.code)
 print("Oracle-Error-Message:", error.message)

Connection Object

Note

Any outstanding changes will be rolled back when the connection object
is destroyed or closed.

	
Connection.__enter__()

	The entry point for the connection as a context manager. It returns itself.

Note

This method is an extension to the DB API definition.

	
Connection.__exit__()

	The exit point for the connection as a context manager. This will close
the connection and roll back any uncommitted transaction.

Note

This method is an extension to the DB API definition.

	
Connection.action

	This write-only attribute sets the action column in the v$session table. It
is a string attribute and cannot be set to None – use the empty string
instead.

Note

This attribute is an extension to the DB API definition.

	
Connection.autocommit

	This read-write attribute determines whether autocommit mode is on or off.
When autocommit mode is on, all statements are committed as soon as they
have completed executing.

Note

This attribute is an extension to the DB API definition.

	
Connection.begin([formatId, transactionId, branchId])

	Explicitly begin a new transaction. Without parameters, this explicitly
begins a local transaction; otherwise, this explicitly begins a distributed
(global) transaction with the given parameters. See the Oracle
documentation for more details.

Note that in order to make use of global (distributed) transactions, the
internal_name and external_name
attributes must be set.

Note

This method is an extension to the DB API definition.

	
Connection.callTimeout

	This read-write attribute specifies the amount of time (in milliseconds)
that a single round-trip to the database may take before a timeout will
occur. A value of 0 means that no timeout will take place.

New in version 7.0.

Note

This attribute is an extension to the DB API definition and is only
available in Oracle Client 18c and higher.

	
Connection.cancel()

	Cancel a long-running transaction.

Note

This method is an extension to the DB API definition.

	
Connection.changepassword(oldpassword, newpassword)

	Change the password of the logon.

Note

This method is an extension to the DB API definition.

	
Connection.client_identifier

	This write-only attribute sets the client_identifier column in the
v$session table.

Note

This attribute is an extension to the DB API definition.

	
Connection.clientinfo

	This write-only attribute sets the client_info column in the v$session
table.

Note

This attribute is an extension to the DB API definition.

	
Connection.close()

	Close the connection now, rather than whenever __del__ is called. The
connection will be unusable from this point forward; an Error exception
will be raised if any operation is attempted with the connection.

All open cursors and LOBs created by the connection will be closed and will
also no longer be usable.

Internally, references to the connection are held by cursor objects,
LOB objects, subscription objects, etc. Once all of these references are
released, the connection itself will be closed automatically. Either
control references to these related objects carefully or explicitly close
connections in order to ensure sufficient resources are available.

	
Connection.commit()

	Commit any pending transactions to the database.

	
Connection.createlob(lobType)

	Create and return a new temporary LOB object of the
specified type. The lobType parameter should be one of
cx_Oracle.CLOB, cx_Oracle.BLOB or cx_Oracle.NCLOB.

New in version 6.2.

Note

This method is an extension to the DB API definition.

	
Connection.current_schema

	This read-write attribute sets the current schema attribute for the
session. Setting this value is the same as executing the SQL statement
“ALTER SESSION SET CURRENT_SCHEMA”. The attribute is set (and verified) on
the next call that does a round trip to the server. The value is placed
before unqualified database objects in SQL statements you then execute.

Note

This attribute is an extension to the DB API definition.

	
Connection.cursor()

	Return a new cursor object using the connection.

	
Connection.dbop

	This write-only attribute sets the database operation that is to be
monitored. This can be viewed in the DBOP_NAME column of the V$SQL_MONITOR
table.

Note

This attribute is an extension to the DB API definition.

	
Connection.deq(name, options, msgproperties, payload)

	Returns a message id after successfully dequeuing a message. The options
object can be created using deqoptions() and the
msgproperties object can be created using
msgproperties(). The payload must be an object created
using ObjectType.newobject().

New in version 5.3.

Deprecated since version 7.2: Use the methods Queue.deqOne() or Queue.deqMany()
instead.

Note

This method is an extension to the DB API definition.

	
Connection.deqoptions()

	Returns an object specifying the options to use when dequeuing messages.
See Dequeue Options for more information.

New in version 5.3.

Deprecated since version 7.2: Use the attribute Queue.deqOptions instead.

Note

This method is an extension to the DB API definition.

	
Connection.dsn

	This read-only attribute returns the TNS entry of the database to which a
connection has been established.

Note

This attribute is an extension to the DB API definition.

	
Connection.edition

	This read-only attribute gets the session edition and is only available in
Oracle Database 11.2 (both client and server must be at this level or
higher for this to work).

New in version 5.3.

Note

This attribute is an extension to the DB API definition.

	
Connection.encoding

	This read-only attribute returns the IANA character set name of the
character set in use by the Oracle client for regular strings.

Note

This attribute is an extension to the DB API definition.

	
Connection.enq(name, options, msgproperties, payload)

	Returns a message id after successfully enqueuing a message. The options
object can be created using enqoptions() and the
msgproperties object can be created using
msgproperties(). The payload must be an object created
using ObjectType.newobject().

New in version 5.3.

Deprecated since version 7.2: Use the methods Queue.enqOne() or Queue.enqMany()
instead.

Note

This method is an extension to the DB API definition.

	
Connection.enqoptions()

	Returns an object specifying the options to use when enqueuing messages.
See Enqueue Options for more information.

New in version 5.3.

Deprecated since version 7.2: Use the attribute Queue.enqOptions instead.

Note

This method is an extension to the DB API definition.

	
Connection.external_name

	This read-write attribute specifies the external name that is used by the
connection when logging distributed transactions.

New in version 5.3.

Note

This attribute is an extension to the DB API definition.

	
Connection.getSodaDatabase()

	Return a SodaDatabase object for Simple Oracle Document
Access (SODA). All SODA operations are performed either on the returned
SodaDatabase object or from objects created by the returned SodaDatabase
object. See here [http://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-BE42F8D3-B86B-43B4-B2A3-5760A4DF79FB] for
additional information on SODA.

New in version 7.0.

Note

This method is an extension to the DB API definition.

	
Connection.gettype(name)

	Return a type object given its name. This can then be
used to create objects which can be bound to cursors created by this
connection.

New in version 5.3.

Note

This method is an extension to the DB API definition.

	
Connection.handle

	This read-only attribute returns the OCI service context handle for the
connection. It is primarily provided to facilitate testing the creation of
a connection using the OCI service context handle.

Note

This attribute is an extension to the DB API definition.

	
Connection.inputtypehandler

	This read-write attribute specifies a method called for each value that is
bound to a statement executed on any cursor associated with this
connection. The method signature is handler(cursor, value, arraysize) and
the return value is expected to be a variable object or None in which case
a default variable object will be created. If this attribute is None, the
default behavior will take place for all values bound to statements.

Note

This attribute is an extension to the DB API definition.

	
Connection.internal_name

	This read-write attribute specifies the internal name that is used by the
connection when logging distributed transactions.

New in version 5.3.

Note

This attribute is an extension to the DB API definition.

	
Connection.ltxid

	This read-only attribute returns the logical transaction id for the
connection. It is used within Oracle Transaction Guard as a means of
ensuring that transactions are not duplicated. See the Oracle documentation
and the provided sample for more information.

New in version 5.3.

	
Connection.maxBytesPerCharacter

	This read-only attribute returns the maximum number of bytes each character
can use for the client character set.

Note

This attribute is an extension to the DB API definition.

	
Connection.module

	This write-only attribute sets the module column in the v$session table.
The maximum length for this string is 48 and if you exceed this length you
will get ORA-24960.

	
Connection.msgproperties(payload, correlation, delay, exceptionq, expiration, priority)

	Returns an object specifying the properties of messages used in advanced
queuing. See Message Properties for more information.

Each of the parameters are optional. If specified, they act as a shortcut
for setting each of the equivalently named properties.

New in version 5.3.

Changed in version 7.2: Added parameters

Note

This method is an extension to the DB API definition.

	
Connection.nencoding

	This read-only attribute returns the IANA character set name of the
national character set in use by the Oracle client.

Note

This attribute is an extension to the DB API definition.

	
Connection.outputtypehandler

	This read-write attribute specifies a method called for each column that is
going to be fetched from any cursor associated with this connection. The
method signature is handler(cursor, name, defaultType, length, precision,
scale) and the return value is expected to be a variable object or None in
which case a default variable object will be created. If this attribute is
None, the default behavior will take place for all columns fetched from
cursors.

Note

This attribute is an extension to the DB API definition.

	
Connection.ping()

	Ping the server which can be used to test if the connection is still
active.

Note

This method is an extension to the DB API definition.

	
Connection.prepare()

	Prepare the distributed (global) transaction for commit. Return a boolean
indicating if a transaction was actually prepared in order to avoid the
error ORA-24756 (transaction does not exist).

Note

This method is an extension to the DB API definition.

	
Connection.queue(name, payloadType=None)

	Creates a queue which is used to enqueue and dequeue
messages in Advanced Queueing.

The name parameter is expected to be a string identifying the queue in
which messages are to be enqueued or dequeued.

The payloadType parameter, if specified, is expected to be an
object type that identifies the type of payload the
queue expects. If not specified, RAW data is enqueued and dequeued.

New in version 7.2.

Note

This method is an extension to the DB API definition.

	
Connection.rollback()

	Rollback any pending transactions.

	
Connection.shutdown([mode])

	Shutdown the database. In order to do this the connection must be connected
as SYSDBA or SYSOPER. Two calls must
be made unless the mode specified is DBSHUTDOWN_ABORT.
An example is shown below:

import cx_Oracle

connection = cx_Oracle.connect(mode = cx_Oracle.SYSDBA)
connection.shutdown(mode = cx_Oracle.DBSHUTDOWN_IMMEDIATE)
cursor = connection.cursor()
cursor.execute("alter database close normal")
cursor.execute("alter database dismount")
connection.shutdown(mode = cx_Oracle.DBSHUTDOWN_FINAL)

Note

This method is an extension to the DB API definition.

	
Connection.startup(force=False, restrict=False)

	Startup the database. This is equivalent to the SQL*Plus command “startup
nomount”. The connection must be connected as SYSDBA or
SYSOPER with the PRELIM_AUTH option
specified for this to work. An example is shown below:

import cx_Oracle

connection = cx_Oracle.connect(
 mode=cx_Oracle.SYSDBA | cx_Oracle.PRELIM_AUTH)
connection.startup()
connection = cx_Oracle.connect(mode=cx_Oracle.SYSDBA)
cursor = connection.cursor()
cursor.execute("alter database mount")
cursor.execute("alter database open")

Note

This method is an extension to the DB API definition.

	
Connection.stmtcachesize

	This read-write attribute specifies the size of the statement cache. This
value can make a significant difference in performance (up to 100x) if you
have a small number of statements that you execute repeatedly.

Note

This attribute is an extension to the DB API definition.

	
Connection.subscribe(namespace=cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE, protocol=cx_Oracle.SUBSCR_PROTO_OCI, callback=None, timeout=0, operations=OPCODE_ALLOPS, port=0, qos=0, ipAddress=None, groupingClass=0, groupingValue=0, groupingType=cx_Oracle.SUBSCR_GROUPING_TYPE_SUMMARY, name=None)

	Return a new subscription object that receives
notifications for events that take place in the database that match the
given parameters.

The namespace parameter specifies the namespace the subscription uses. It
can be one of cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE or
cx_Oracle.SUBSCR_NAMESPACE_AQ.

The protocol parameter specifies the protocol to use when notifications are
sent. Currently the only valid value is cx_Oracle.SUBSCR_PROTO_OCI.

The callback is expected to be a callable that accepts a single parameter.
A message object is passed to this callback whenever a
notification is received.

The timeout value specifies that the subscription expires after the given
time in seconds. The default value of 0 indicates that the subscription
never expires.

The operations parameter enables filtering of the messages that are sent
(insert, update, delete). The default value will send notifications for all
operations. This parameter is only used when the namespace is set to
cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE.

The port parameter specifies the listening port for callback notifications
from the database server. If not specified, an unused port will be selected
by the Oracle Client libraries.

The qos parameter specifies quality of service options. It should be one or
more of the following flags, OR’ed together:
cx_Oracle.SUBSCR_QOS_RELIABLE,
cx_Oracle.SUBSCR_QOS_DEREG_NFY,
cx_Oracle.SUBSCR_QOS_ROWIDS,
cx_Oracle.SUBSCR_QOS_QUERY,
cx_Oracle.SUBSCR_QOS_BEST_EFFORT.

The ipAddress parameter specifies the IP address (IPv4 or IPv6) in standard
string notation to bind for callback notifications from the database
server. If not specified, the client IP address will be determined by the
Oracle Client libraries.

The groupingClass parameter specifies what type of grouping of
notifications should take place. Currently, if set, this value can only be
set to the value cx_Oracle.SUBSCR_GROUPING_CLASS_TIME, which
will group notifications by the number of seconds specified in the
groupingValue parameter. The groupingType parameter should be one of the
values cx_Oracle.SUBSCR_GROUPING_TYPE_SUMMARY (the default) or
cx_Oracle.SUBSCR_GROUPING_TYPE_LAST.

The name parameter is used to identify the subscription and is specific to
the selected namespace. If the namespace parameter is
cx_Oracle.SUBSCR_NAMESPACE_DBCHANGE then the name is optional and
can be any value. If the namespace parameter is
cx_Oracle.SUBSCR_NAMESPACE_AQ, however, the name must be in the
format ‘<QUEUE_NAME>’ for single consumer queues and
‘<QUEUE_NAME>:<CONSUMER_NAME>’ for multiple consumer queues, and identifies
the queue that will be monitored for messages. The queue name may include
the schema, if needed.

New in version 6.4: The parameters ipAddress, groupingClass,
groupingValue, groupingType and name were added.

Note

This method is an extension to the DB API definition.

Note

The subscription can be deregistered in the database by calling the
function unsubscribe(). If this method is not
called and the connection that was used to create the subscription is
explicitly closed using the function close(), the
subscription will not be deregistered in the database.

	
Connection.tag

	This read-write attribute initially contains the actual tag of the session
that was acquired from a pool by SessionPool.acquire(). If the
connection was not acquired from a pool or no tagging parameters were
specified (tag and matchanytag) when the connection was acquired from the
pool, this value will be None. If the value is changed, it must be a string
containing name=value pairs like “k1=v1;k2=v2”.

If this value is not None when the connection is released back to the pool
it will be used to retag the session. This value can be overridden in the
call to SessionPool.release().

Note

This attribute is an extension to the DB API definition.

New in version 7.1.

	
Connection.tnsentry

	This read-only attribute returns the TNS entry of the database to which a
connection has been established.

Note

This attribute is an extension to the DB API definition.

	
Connection.unsubscribe(subscr)

	Unsubscribe from events in the database that were originally subscribed to
using subscribe(). The connection used to unsubscribe
should be the same one used to create the subscription, or should access
the same database and be connected as the same user name.

New in version 6.4.

	
Connection.username

	This read-only attribute returns the name of the user which established the
connection to the database.

Note

This attribute is an extension to the DB API definition.

	
Connection.version

	This read-only attribute returns the version of the database to which a
connection has been established.

Note

This attribute is an extension to the DB API definition.

Note

If you connect to Oracle Database 18 or higher with client libraries
12.2 or lower that you will only receive the base version (such as
18.0.0.0.0) instead of the full version (18.3.0.0.0).

Cursor Object

	
Cursor.__enter__()

	The entry point for the cursor as a context manager. It returns itself.

Note

This method is an extension to the DB API definition.

	
Cursor.__exit__()

	The exit point for the cursor as a context manager. It closes the cursor.

Note

This method is an extension to the DB API definition.

	
Cursor.arraysize

	This read-write attribute specifies the number of rows to fetch at a time
internally and is the default number of rows to fetch with the
fetchmany() call. It defaults to 100 meaning to fetch 100
rows at a time. Note that this attribute can drastically affect the
performance of a query since it directly affects the number of network
round trips that need to be performed. This is the reason for setting it to
100 instead of the 1 that the DB API recommends.

	
Cursor.bindarraysize

	This read-write attribute specifies the number of rows to bind at a time
and is used when creating variables via setinputsizes() or
var(). It defaults to 1 meaning to bind a single row at a
time.

Note

The DB API definition does not define this attribute.

	
Cursor.arrayvar(dataType, value[, size])

	Create an array variable associated with the cursor of the given type and
size and return a variable object. The value is either an
integer specifying the number of elements to allocate or it is a list and
the number of elements allocated is drawn from the size of the list. If the
value is a list, the variable is also set with the contents of the list. If
the size is not specified and the type is a string or binary, 4000 bytes
is allocated. This is needed for passing arrays to PL/SQL (in cases where
the list might be empty and the type cannot be determined automatically) or
returning arrays from PL/SQL.

Array variables can only be used for PL/SQL associative arrays with
contiguous keys. For PL/SQL associative arrays with sparsely populated keys
or for varrays and nested tables, the approach shown in this
example [https://github.com/oracle/python-cx_Oracle/blob/master/samples/PLSQLCollection.py] needs to be used.

Note

The DB API definition does not define this method.

	
Cursor.bindnames()

	Return the list of bind variable names bound to the statement. Note that a
statement must have been prepared first.

Note

The DB API definition does not define this method.

	
Cursor.bindvars

	This read-only attribute provides the bind variables used for the last
execute. The value will be either a list or a dictionary depending on
whether binding was done by position or name. Care should be taken when
referencing this attribute. In particular, elements should not be removed
or replaced.

Note

The DB API definition does not define this attribute.

	
Cursor.callfunc(name, returnType, parameters=[], keywordParameters={})

	Call a function with the given name. The return type is specified in the
same notation as is required by setinputsizes(). The
sequence of parameters must contain one entry for each parameter that the
function expects. Any keyword parameters will be included after the
positional parameters. The result of the call is the return value of the
function.

See PL/SQL Stored Functions for an example.

Note

The DB API definition does not define this method.

Note

If you intend to call Cursor.setinputsizes() on the cursor
prior to making this call, then note that the first item in the
parameter list refers to the return value of the function.

	
Cursor.callproc(name, parameters=[], keywordParameters={})

	Call a procedure with the given name. The sequence of parameters must
contain one entry for each parameter that the procedure expects. The result
of the call is a modified copy of the input sequence. Input parameters are
left untouched; output and input/output parameters are replaced with
possibly new values. Keyword parameters will be included after the
positional parameters and are not returned as part of the output sequence.

See PL/SQL Stored Procedures for an example.

Note

The DB API definition does not allow for keyword parameters.

	
Cursor.close()

	Close the cursor now, rather than whenever __del__ is called. The cursor
will be unusable from this point forward; an Error exception will be raised
if any operation is attempted with the cursor.

	
Cursor.connection

	This read-only attribute returns a reference to the connection object on
which the cursor was created.

Note

This attribute is an extension to the DB API definition but it is
mentioned in PEP 249 as an optional extension.

	
Cursor.description

	This read-only attribute is a sequence of 7-item sequences. Each of these
sequences contains information describing one result column: (name, type,
display_size, internal_size, precision, scale, null_ok). This attribute
will be None for operations that do not return rows or if the cursor has
not had an operation invoked via the execute() method yet.

The type will be one of the type objects defined at the module level.

	
Cursor.execute(statement, [parameters,]**keywordParameters)

	Execute a statement against the database. See SQL Execution.

Parameters may be passed as a dictionary or sequence or as keyword
parameters. If the parameters are a dictionary, the values will be bound by
name and if the parameters are a sequence the values will be bound by
position. Note that if the values are bound by position, the order of the
variables is from left to right as they are encountered in the statement
and SQL statements are processed differently than PL/SQL statements. For
this reason, it is generally recommended to bind parameters by name instead
of by position.

Parameters passed as a dictionary are name and value pairs. The name maps
to the bind variable name used by the statement and the value maps to the
Python value you wish bound to that bind variable.

A reference to the statement will be retained by the cursor. If None or the
same string object is passed in again, the cursor will execute that
statement again without performing a prepare or rebinding and redefining.
This is most effective for algorithms where the same statement is used, but
different parameters are bound to it (many times). Note that parameters
that are not passed in during subsequent executions will retain the value
passed in during the last execution that contained them.

For maximum efficiency when reusing an statement, it is best to use the
setinputsizes() method to specify the parameter types and
sizes ahead of time; in particular, None is assumed to be a string of
length 1 so any values that are later bound as numbers or dates will raise
a TypeError exception.

If the statement is a query, the cursor is returned as a convenience to the
caller (so it can be used directly as an iterator over the rows in the
cursor); otherwise, None is returned.

Note

The DB API definition does not define the return value of this method.

	
Cursor.executemany(statement, parameters, batcherrors=False, arraydmlrowcounts=False)

	Prepare a statement for execution against a database and then execute it
against all parameter mappings or sequences found in the sequence
parameters. See Batch Statement Execution and Bulk Loading.

The statement is managed in the same way as the execute()
method manages it. If the size of the buffers allocated for any of the
parameters exceeds 2 GB, you will receive the error “DPI-1015: array size
of <n> is too large”, where <n> varies with the size of each element being
allocated in the buffer. If you receive this error, decrease the number of
elements in the sequence parameters.

If there are no parameters, or parameters have previously been bound, the
number of iterations can be specified as an integer instead of needing to
provide a list of empty mappings or sequences.

When true, the batcherrors parameter enables batch error support within
Oracle and ensures that the call succeeds even if an exception takes place
in one or more of the sequence of parameters. The errors can then be
retrieved using getbatcherrors().

When true, the arraydmlrowcounts parameter enables DML row counts to be
retrieved from Oracle after the method has completed. The row counts can
then be retrieved using getarraydmlrowcounts().

Both the batcherrors parameter and the arraydmlrowcounts parameter can only
be true when executing an insert, update, delete or merge statement; in all
other cases an error will be raised.

For maximum efficiency, it is best to use the
setinputsizes() method to specify the parameter types and
sizes ahead of time; in particular, None is assumed to be a string of
length 1 so any values that are later bound as numbers or dates will raise
a TypeError exception.

	
Cursor.executemanyprepared(numIters)

	Execute the previously prepared and bound statement the given number of
times. The variables that are bound must have already been set to their
desired value before this call is made. This method was designed for the
case where optimal performance is required as it comes at the expense of
compatibility with the DB API.

Note

The DB API definition does not define this method.

Deprecated since version 6.4: Use executemany() instead with None for the statement
argument and an integer for the parameters argument.

	
Cursor.fetchall()

	Fetch all (remaining) rows of a query result, returning them as a list of
tuples. An empty list is returned if no more rows are available. Note that
the cursor’s arraysize attribute can affect the performance of this
operation, as internally reads from the database are done in batches
corresponding to the arraysize.

An exception is raised if the previous call to execute()
did not produce any result set or no call was issued yet.

See Fetch Methods for an example.

	
Cursor.fetchmany([numRows=cursor.arraysize])

	Fetch the next set of rows of a query result, returning a list of tuples.
An empty list is returned if no more rows are available. Note that the
cursor’s arraysize attribute can affect the performance of this operation.

The number of rows to fetch is specified by the parameter. If it is not
given, the cursor’s arraysize attribute determines the number of rows to be
fetched. If the number of rows available to be fetched is fewer than the
amount requested, fewer rows will be returned.

An exception is raised if the previous call to execute()
did not produce any result set or no call was issued yet.

See Fetch Methods for an example.

	
Cursor.fetchone()

	Fetch the next row of a query result set, returning a single tuple or None
when no more data is available.

An exception is raised if the previous call to execute()
did not produce any result set or no call was issued yet.

See Fetch Methods for an example.

	
Cursor.fetchraw([numRows=cursor.arraysize])

	Fetch the next set of rows of a query result into the internal buffers of
the defined variables for the cursor. The number of rows actually fetched
is returned. This method was designed for the case where optimal
performance is required as it comes at the expense of compatibility with
the DB API.

An exception is raised if the previous call to execute()
did not produce any result set or no call was issued yet.

Note

The DB API definition does not define this method.

	
Cursor.fetchvars

	This read-only attribute specifies the list of variables created for the
last query that was executed on the cursor. Care should be taken when
referencing this attribute. In particular, elements should not be removed
or replaced.

Note

The DB API definition does not define this attribute.

	
Cursor.getarraydmlrowcounts()

	Retrieve the DML row counts after a call to executemany()
with arraydmlrowcounts enabled. This will return a list of integers
corresponding to the number of rows affected by the DML statement for each
element of the array passed to executemany().

Note

The DB API definition does not define this method and it is only
available for Oracle 12.1 and higher.

	
Cursor.getbatcherrors()

	Retrieve the exceptions that took place after a call to
executemany() with batcherrors enabled. This will return a
list of Error objects, one error for each iteration that failed. The offset
can be determined by looking at the offset attribute of the error object.

Note

The DB API definition does not define this method.

	
Cursor.getimplicitresults()

	Return a list of cursors which correspond to implicit results made
available from a PL/SQL block or procedure without the use of OUT ref
cursor parameters. The PL/SQL block or procedure opens the cursors and
marks them for return to the client using the procedure
dbms_sql.return_result. Cursors returned in this fashion should not be
closed. They will be closed automatically by the parent cursor when it is
closed. Closing the parent cursor will invalidate the cursors returned by
this method.

New in version 5.3.

Note

The DB API definition does not define this method and it is only
available for Oracle Database 12.1 (both client and server must be at
this level or higher). It is most like the DB API method nextset(), but
unlike that method (which requires that the next result set overwrite
the current result set), this method returns cursors which can be
fetched independently of each other.

	
Cursor.inputtypehandler

	This read-write attribute specifies a method called for each value that is
bound to a statement executed on the cursor and overrides the attribute
with the same name on the connection if specified. The method signature is
handler(cursor, value, arraysize) and the return value is expected to be a
variable object or None in which case a default variable object will be
created. If this attribute is None, the value of the attribute with the
same name on the connection is used.

Note

This attribute is an extension to the DB API definition.

	
Cursor.__iter__()

	Returns the cursor itself to be used as an iterator.

Note

This method is an extension to the DB API definition but it is
mentioned in PEP 249 as an optional extension.

	
Cursor.outputtypehandler

	This read-write attribute specifies a method called for each column that is
to be fetched from this cursor. The method signature is
handler(cursor, name, defaultType, length, precision, scale) and the return
value is expected to be a variable object or None in which case a default
variable object will be created. If this attribute is None, the value of
the attribute with the same name on the connection is used instead.

See Changing Fetched Data Types with Output Type Handlers.

Note

This attribute is an extension to the DB API definition.

	
Cursor.parse(statement)

	This can be used to parse a statement without actually executing it (this
step is done automatically by Oracle when a statement is executed).

Note

The DB API definition does not define this method.

Note

You can parse any DML or DDL statement. DDL statements are executed
immediately and an implied commit takes place.

	
Cursor.prepare(statement[, tag])

	This can be used before a call to execute() to define the
statement that will be executed. When this is done, the prepare phase will
not be performed when the call to execute() is made with
None or the same string object as the statement. If specified the
statement will be returned to the statement cache with the given tag. See
the Oracle documentation for more information about the statement cache.

Note

The DB API definition does not define this method.

	
Cursor.rowcount

	This read-only attribute specifies the number of rows that have currently
been fetched from the cursor (for select statements), that have been
affected by the operation (for insert, update, delete and merge
statements), or the number of successful executions of the statement
(for PL/SQL statements).

	
Cursor.rowfactory

	This read-write attribute specifies a method to call for each row that is
retrieved from the database. Ordinarily a tuple is returned for each row
but if this attribute is set, the method is called with the tuple that
would normally be returned, and the result of the method is returned
instead.

Note

The DB API definition does not define this attribute.

	
Cursor.scroll(value=0, mode="relative")

	Scroll the cursor in the result set to a new position according to the
mode.

If mode is “relative” (the default value), the value is taken as an offset
to the current position in the result set. If set to “absolute”, value
states an absolute target position. If set to “first”, the cursor is
positioned at the first row and if set to “last”, the cursor is set to the
last row in the result set.

An error is raised if the mode is “relative” or “absolute” and the scroll
operation would position the cursor outside of the result set.

New in version 5.3.

Note

This method is an extension to the DB API definition but it is
mentioned in PEP 249 as an optional extension.

	
Cursor.scrollable

	This read-write boolean attribute specifies whether the cursor can be
scrolled or not. By default, cursors are not scrollable, as the server
resources and response times are greater than nonscrollable cursors. This
attribute is checked and the corresponding mode set in Oracle when calling
the method execute().

New in version 5.3.

Note

The DB API definition does not define this attribute.

	
Cursor.setinputsizes(*args, **keywordArgs)

	This can be used before a call to execute(),
callfunc() or callproc() to predefine
memory areas for the operation’s parameters. Each parameter should be a
type object corresponding to the input that will be used or it should be an
integer specifying the maximum length of a string parameter. Use keyword
parameters when binding by name and positional parameters when binding by
position. The singleton None can be used as a parameter when using
positional parameters to indicate that no space should be reserved for that
position.

Note

If you plan to use callfunc() then be aware that the
first parameter in the list refers to the return value of the function.

	
Cursor.setoutputsize(size[, column])

	This method does nothing and is retained solely for compatibility with the
DB API. The module automatically allocates as much space as needed to fetch
LONG and LONG RAW columns (or CLOB as string and BLOB as bytes).

	
Cursor.statement

	This read-only attribute provides the string object that was previously
prepared with prepare() or executed with
execute().

Note

The DB API definition does not define this attribute.

	
Cursor.var(dataType[, size, arraysize, inconverter, outconverter, typename, encodingErrors])

	Create a variable with the specified characteristics. This method was
designed for use with PL/SQL in/out variables where the length or type
cannot be determined automatically from the Python object passed in or for
use in input and output type handlers defined on cursors or connections.

The dataType parameter specifies the type of data that should be stored in
the variable. This should be one of the types defined at the module level
(such as cx_Oracle.STRING) or a Python type that cx_Oracle knows
how to process (such as str) or an object type returned from the method
Connection.gettype().

The size parameter specifies the length of string and raw variables and is
ignored in all other cases. If not specified for string and raw variables,
the value 4000 is used.

The arraysize parameter specifies the number of elements the variable will
have. If not specified the bind array size (usually 1) is used. When a
variable is created in an output type handler this parameter should be set
to the cursor’s array size.

The inconverter and outconverter parameters specify methods used for
converting values to/from the database. More information can be found in
the section on variable objects.

The typename parameter specifies the name of a SQL object type and must be
specified when using type cx_Oracle.OBJECT unless the type object
was passed directly as the first parameter.

The encodingErrors parameter specifies what should happen when decoding
byte strings fetched from the database into strings (Python 3) or unicode
objects (Python 2). It should be one of the values noted in the builtin
decode [https://docs.python.org/3/library/stdtypes.html#bytes.decode]
function.

Note

The DB API definition does not define this method.

Variable Objects

Note

The DB API definition does not define this object.

	
Variable.actualElements

	This read-only attribute returns the actual number of elements in the
variable. This corresponds to the number of elements in a PL/SQL index-by
table for variables that are created using the method
Cursor.arrayvar(). For all other variables this value will be
identical to the attribute numElements.

	
Variable.bufferSize

	This read-only attribute returns the size of the buffer allocated for each
element in bytes.

	
Variable.getvalue([pos=0])

	Return the value at the given position in the variable. For variables
created using the method Cursor.arrayvar() the value returned will
be a list of each of the values in the PL/SQL index-by table. For variables
bound to DML returning statements, the value returned will also be a list
corresponding to the returned data for the given execution of the statement
(as identified by the pos parameter).

	
Variable.inconverter

	This read-write attribute specifies the method used to convert data from
Python to the Oracle database. The method signature is converter(value)
and the expected return value is the value to bind to the database. If this
attribute is None, the value is bound directly without any conversion.

	
Variable.numElements

	This read-only attribute returns the number of elements allocated in an
array, or the number of scalar items that can be fetched into the variable
or bound to the variable.

	
Variable.outconverter

	This read-write attribute specifies the method used to convert data from
from the Oracle to Python. The method signature is converter(value)
and the expected return value is the value to return to Python. If this
attribute is None, the value is returned directly without any conversion.

	
Variable.setvalue(pos, value)

	Set the value at the given position in the variable.

	
Variable.size

	This read-only attribute returns the size of the variable. For strings this
value is the size in characters. For all others, this is same value as the
attribute bufferSize.

	
Variable.type

	This read-only attribute returns the type of the variable for those
variables that bind Oracle objects (it is not present for any other type of
variable).

	
Variable.values

	This read-only attribute returns a copy of the value of all actual
positions in the variable as a list. This is the equivalent of calling
getvalue() for each valid position and the length will
correspond to the value of the actualElements attribute.

SessionPool Object

Note

This object is an extension to the DB API.

Connection pooling in cx_Oracle is handled by SessionPool objects.

See Connection Pooling for information on connection pooling.

	
SessionPool.acquire(user=None, password=None, cclass=None, purity=cx_Oracle.ATTR_PURITY_DEFAULT, tag=None, matchanytag=False, shardingkey=[], supershardingkey=[])

	Acquire a connection from the session pool and return a
connection object.

If the pool is homogeneous, the user and password parameters cannot be
specified. If they are, an exception will be raised.

The cclass parameter, if specified, should be a string corresponding to the
connection class for database resident connection pooling (DRCP).

The purity parameter is expected to be one of
ATTR_PURITY_NEW, ATTR_PURITY_SELF, or
ATTR_PURITY_DEFAULT.

The tag parameter, if specified, is expected to be a string with name=value
pairs like “k1=v1;k2=v2” and will limit the sessions that can be returned
from a session pool unless the matchanytag parameter is set to True. In
that case sessions with the specified tag will be preferred over others,
but if no such sessions are available a session with a different tag may be
returned instead. In any case, untagged sessions will always be returned if
no sessions with the specified tag are available. Sessions are tagged when
they are released back to the pool.

The shardingkey and supershardingkey parameters, if specified, are expected
to be a sequence of values which will be used to identify the database
shard to connect to. Currently only strings are supported for the key
values.

	
SessionPool.busy

	This read-only attribute returns the number of sessions currently acquired.

	
SessionPool.close(force=False)

	Close the session pool now, rather than when the last reference to it is
released, which makes it unusable for further work.

If any connections have been acquired and not released back to the pool
this method will fail unless the force parameter is set to True.

	
SessionPool.drop(connection)

	Drop the connection from the pool which is useful if the connection is no
longer usable (such as when the session is killed).

	
SessionPool.dsn

	This read-only attribute returns the TNS entry of the database to which a
connection has been established.

	
SessionPool.homogeneous

	This read-write boolean attribute indicates whether the pool is considered
homogeneous or not. If the pool is not homogeneous different authentication
can be used for each connection acquired from the pool.

	
SessionPool.increment

	This read-only attribute returns the number of sessions that will be
established when additional sessions need to be created.

	
SessionPool.max

	This read-only attribute returns the maximum number of sessions that the
session pool can control.

	
SessionPool.max_lifetime_session

	This read-write attribute returns the maximum length of time (in seconds)
that a pooled session may exist. Sessions that are in use will not be
closed. They become candidates for termination only when they are released
back to the pool and have existed for longer than max_lifetime_session
seconds. Note that termination only occurs when the pool is accessed. A
value of 0 means that there is no maximum length of time that a pooled
session may exist. This attribute is only available in Oracle Database
12.1.

New in version 5.3.

	
SessionPool.min

	This read-only attribute returns the number of sessions with which the
session pool was created and the minimum number of sessions that will be
controlled by the session pool.

	
SessionPool.name

	This read-only attribute returns the name assigned to the session pool by
Oracle.

	
SessionPool.opened

	This read-only attribute returns the number of sessions currently opened by
the session pool.

	
SessionPool.release(connection, tag=None)

	Release the connection back to the pool now, rather than whenever __del__
is called. The connection will be unusable from this point forward; an
Error exception will be raised if any operation is attempted with the
connection. Any cursors or LOBs created by the connection will also be
marked unusable and an Error exception will be raised if any operation is
attempted with them.

Internally, references to the connection are held by cursor objects,
LOB objects, etc. Once all of these references are released, the connection
itself will be released back to the pool automatically. Either control
references to these related objects carefully or explicitly release
connections back to the pool in order to ensure sufficient resources are
available.

If the tag is not None, it is expected to be a string with name=value pairs
like “k1=v1;k2=v2” and will override the value in the property
Connection.tag. If either Connection.tag or the tag
parameter are not None, the connection will be retagged when it is released
back to the pool.

	
SessionPool.stmtcachesize

	This read-write attribute specifies the size of the statement cache that
will be used as the starting point for any connections that are created by
the session pool. Once created, the connection’s statement cache size can
only be changed by setting the stmtcachesize attribute on the connection
itself.

New in version 6.0.

	
SessionPool.timeout

	This read-write attribute specifies the time (in seconds) after which idle
sessions will be terminated in order to maintain an optimum number of open
sessions. Note that termination only occurs when the pool is accessed. A
value of 0 means that no idle sessions are terminated.

	
SessionPool.tnsentry

	This read-only attribute returns the TNS entry of the database to which a
connection has been established.

	
SessionPool.username

	This read-only attribute returns the name of the user which established the
connection to the database.

	
SessionPool.wait_timeout

	This read-write attribute specifies the time (in milliseconds) that the
caller should wait for a session to become available in the pool before
returning with an error. This value is only used if the getmode parameter
to cx_Oracle.SessionPool() was the value
cx_Oracle.SPOOL_ATTRVAL_TIMEDWAIT.

New in version 6.4.

Subscription Object

Note

This object is an extension the DB API.

	
Subscription.callback

	This read-only attribute returns the callback that was registered when the
subscription was created.

	
Subscription.connection

	This read-only attribute returns the connection that was used to register
the subscription when it was created.

	
Subscription.id

	This read-only attribute returns the value of REGID found in the
database view USER_CHANGE_NOTIFICATION_REGS or the value of REG_ID
found in the database view USER_SUBSCR_REGISTRATIONS. For AQ
subscriptions, the value is 0.

	
Subscription.ipAddress

	This read-only attribute returns the IP address used for callback
notifications from the database server. If not set during construction,
this value is None.

New in version 6.4.

	
Subscription.name

	This read-only attribute returns the name used to register the subscription
when it was created.

New in version 6.4.

	
Subscription.namespace

	This read-only attribute returns the namespace used to register the
subscription when it was created.

	
Subscription.operations

	This read-only attribute returns the operations that will send
notifications for each table or query that is registered using this
subscription.

	
Subscription.port

	This read-only attribute returns the port used for callback notifications
from the database server. If not set during construction, this value is
zero.

	
Subscription.protocol

	This read-only attribute returns the protocol used to register the
subscription when it was created.

	
Subscription.qos

	This read-only attribute returns the quality of service flags used to
register the subscription when it was created.

	
Subscription.registerquery(statement[, args])

	Register the query for subsequent notification when tables referenced by
the query are changed. This behaves similarly to cursor.execute() but only
queries are permitted and the args parameter must be a sequence or
dictionary. If the qos parameter included the flag
cx_Oracle.SUBSCR_QOS_QUERY when the subscription was created, then the ID
for the registered query is returned; otherwise, None is returned.

	
Subscription.timeout

	This read-only attribute returns the timeout (in seconds) that was
specified when the subscription was created. A value of 0 indicates that
there is no timeout.

Message Objects

Note

This object is created internally when notification is received and passed
to the callback procedure specified when a subscription is created.

	
Message.consumerName

	This read-only attribute returns the name of the consumer which generated
the notification. It will be populated if the subscription was created with
the namespace cx_Oracle.SUBSCR_NAMESPACE_AQ and the queue is a
multiple consumer queue.

New in version 6.4.

	
Message.dbname

	This read-only attribute returns the name of the database that generated
the notification.

	
Message.queries

	This read-only attribute returns a list of message query objects that give
information about query result sets changed for this notification. This
attribute will be None if the qos parameter did not include the flag
SUBSCR_QOS_QUERY when the subscription was created.

	
Message.queueName

	This read-only attribute returns the name of the queue which generated the
notification. It will only be populated if the subscription was created
with the namespace cx_Oracle.SUBSCR_NAMESPACE_AQ.

New in version 6.4.

	
Message.registered

	This read-only attribute returns whether the subscription which generated
this notification is still registered with the database. The subscription
is automatically deregistered with the database when the subscription
timeout value is reached or when the first notification is sent (when the
quality of service flag cx_Oracle.SUBSCR_QOS_DEREG_NFY is used).

New in version 6.4.

	
Message.subscription

	This read-only attribute returns the subscription object for which this
notification was generated.

	
Message.tables

	This read-only attribute returns a list of message table objects that give
information about the tables changed for this notification. This
attribute will be None if the qos parameter included the flag
SUBSCR_QOS_QUERY when the subscription was created.

	
Message.txid

	This read-only attribute returns the id of the transaction that generated
the notification.

	
Message.type

	This read-only attribute returns the type of message that has been sent.
See the constants section on event types for additional information.

Message Table Objects

Note

This object is created internally for each table changed when notification
is received and is found in the tables attribute of message objects, and
the tables attribute of message query objects.

	
MessageTable.name

	This read-only attribute returns the name of the table that was changed.

	
MessageTable.operation

	This read-only attribute returns the operation that took place on the table
that was changed.

	
MessageTable.rows

	This read-only attribute returns a list of message row objects that give
information about the rows changed on the table. This value is only filled
in if the qos parameter to the Connection.subscribe() method
included the flag SUBSCR_QOS_ROWIDS.

Message Row Objects

Note

This object is created internally for each row changed on a table when
notification is received and is found in the rows attribute of message
table objects.

	
MessageRow.operation

	This read-only attribute returns the operation that took place on the row
that was changed.

	
MessageRow.rowid

	This read-only attribute returns the rowid of the row that was changed.

Message Query Objects

Note

This object is created internally for each query result set changed when
notification is received and is found in the queries attribute of message
objects.

	
MessageQuery.id

	This read-only attribute returns the query id of the query for which the
result set changed. The value will match the value returned by
Subscription.registerquery when the related query was registered.

	
MessageQuery.operation

	This read-only attribute returns the operation that took place on the query
result set that was changed. Valid values for this attribute are
EVENT_DEREG and EVENT_QUERYCHANGE.

	
MessageQuery.tables

	This read-only attribute returns a list of message table objects that give
information about the table changes that caused the query result set to
change for this notification.

LOB Objects

See Using CLOB and BLOB Data for more information about using LOBs.

Note

This object is an extension the DB API. It is returned whenever Oracle
CLOB, BLOB and BFILE columns are fetched.

	
LOB.close()

	Close the LOB. Call this when writing is completed so that the indexes
associated with the LOB can be updated – but only if open()
was called first.

	
LOB.fileexists()

	Return a boolean indicating if the file referenced by the BFILE type LOB
exists.

	
LOB.getchunksize()

	Return the chunk size for the internal LOB. Reading and writing to the LOB
in chunks of multiples of this size will improve performance.

	
LOB.getfilename()

	Return a two-tuple consisting of the directory alias and file name for a
BFILE type LOB.

	
LOB.isopen()

	Return a boolean indicating if the LOB has been opened using the method
open().

	
LOB.open()

	Open the LOB for writing. This will improve performance when writing to a
LOB in chunks and there are functional or extensible indexes associated
with the LOB. If this method is not called, each write will perform an open
internally followed by a close after the write has been completed.

	
LOB.read([offset=1[, amount]])

	Return a portion (or all) of the data in the LOB object. Note that the
amount and offset are in bytes for BLOB and BFILE type LOBs and in UCS-2
code points for CLOB and NCLOB type LOBs. UCS-2 code points are equivalent
to characters for all but supplemental characters. If supplemental
characters are in the LOB, the offset and amount will have to be chosen
carefully to avoid splitting a character.

	
LOB.setfilename(dirAlias, name)

	Set the directory alias and name of the BFILE type LOB.

	
LOB.size()

	Returns the size of the data in the LOB object. For BLOB and BFILE type
LOBs this is the number of bytes. For CLOB and NCLOB type LOBs this is the
number of UCS-2 code points. UCS-2 code points are equivalent to characters
for all but supplemental characters.

	
LOB.trim([newSize=0])

	Trim the LOB to the new size.

	
LOB.write(data[, offset=1])

	Write the data to the LOB object at the given offset. The offset is in
bytes for BLOB type LOBs and in UCS-2 code points for CLOB and NCLOB type
LOBs. UCS-2 code points are equivalent to characters for all but
supplemental characters. If supplemental characters are in the LOB, the
offset will have to be chosen carefully to avoid splitting a character.
Note that if you want to make the LOB value smaller, you must use the
trim() function.

Object Type Objects

Note

This object is an extension to the DB API. It is returned by the
Connection.gettype() call and is available as the
Variable.type for variables containing Oracle objects.

	
ObjectType([sequence])

	The object type may be called directly and serves as an alternative way of
calling newobject().

	
ObjectType.attributes

	This read-only attribute returns a list of the attributes that make up the
object type. Each attribute has a name attribute on it.

	
ObjectType.iscollection

	This read-only attribute returns a boolean indicating if the object type
refers to a collection or not.

	
ObjectType.name

	This read-only attribute returns the name of the type.

	
ObjectType.newobject([sequence])

	Return a new Oracle object of the given type. This object can then be
modified by setting its attributes and then bound to a cursor for
interaction with Oracle. If the object type refers to a collection, a
sequence may be passed and the collection will be initialized with the
items in that sequence.

	
ObjectType.schema

	This read-only attribute returns the name of the schema that owns the type.

Object Objects

Note

This object is an extension to the DB API. It is returned by the
ObjectType.newobject() call and can be bound to variables of
type OBJECT. Attributes can be retrieved and set
directly.

	
Object.append(element)

	Append an element to the collection object. If no elements exist in the
collection, this creates an element at index 0; otherwise, it creates an
element immediately following the highest index available in the
collection.

	
Object.asdict()

	Return a dictionary where the collection’s indexes are the keys and the
elements are its values.

New in version 7.0.

	
Object.aslist()

	Return a list of each of the collection’s elements in index order.

	
Object.copy()

	Create a copy of the object and return it.

	
Object.delete(index)

	Delete the element at the specified index of the collection. If the
element does not exist or is otherwise invalid, an error is raised. Note
that the indices of the remaining elements in the collection are not
changed. In other words, the delete operation creates holes in the
collection.

	
Object.exists(index)

	Return True or False indicating if an element exists in the collection at
the specified index.

	
Object.extend(sequence)

	Append all of the elements in the sequence to the collection. This is
the equivalent of performing append() for each element
found in the sequence.

	
Object.first()

	Return the index of the first element in the collection. If the collection
is empty, None is returned.

	
Object.getelement(index)

	Return the element at the specified index of the collection. If no element
exists at that index, an exception is raised.

	
Object.last()

	Return the index of the last element in the collection. If the collection
is empty, None is returned.

	
Object.next(index)

	Return the index of the next element in the collection following the
specified index. If there are no elements in the collection following the
specified index, None is returned.

	
Object.prev(index)

	Return the index of the element in the collection preceding the specified
index. If there are no elements in the collection preceding the
specified index, None is returned.

	
Object.setelement(index, value)

	Set the value in the collection at the specified index to the given value.

	
Object.size()

	Return the number of elements in the collection.

	
Object.trim(num)

	Remove the specified number of elements from the end of the collection.

Advanced Queuing (AQ)

See Oracle Advanced Queuing for more information about using AQ in cx_Oracle.

Note

All of these objects are extensions to the DB API.

Queues

These objects are created using the Connection.queue() method and are
used to enqueue and dequeue messages.

	
Queue.connection

	This read-only attribute returns a reference to the connection object on
which the queue was created.

	
Queue.deqMany(maxMessages)

	Dequeues up to the specified number of messages from the queue and returns
a list of these messages. Each element of the returned list is a
message property object.

	
Queue.deqOne()

	Dequeues at most one message from the queue. If a message is dequeued, it
will be a message property object; otherwise, it will
be the value None.

	
Queue.deqOptions

	This read-only attribute returns a reference to the options that will be used when dequeuing messages from the queue.

	
Queue.enqOne(message)

	Enqueues a single message into the queue. The message must be a
message property object which has had its payload
attribute set to a value that the queue supports.

	
Queue.enqMany(messages)

	Enqueues multiple messages into the queue. The messages parameter must be a
sequence containing message property objects which
have all had their payload attribute set to a value that the queue
supports.

Warning: calling this function in parallel on different connections
acquired from the same pool may fail due to Oracle bug 29928074. Ensure
that this function is not run in parallel, use standalone connections or
connections from different pools, or make multiple calls to
Queue.enqOne() instead. The function Queue.deqMany()
call is not affected.

	
Queue.enqOptions

	This read-only attribute returns a reference to the options that will be used when enqueuing messages into the queue.

	
Queue.name

	This read-only attribute returns the name of the queue.

	
Queue.payloadType

	This read-only attribute returns the object type for payloads that can be
enqueued and dequeued. If using a raw queue, this returns the value None.

Dequeue Options

Note

These objects are used to configure how messages are dequeued from queues.
An instance of this object is found in the attribute
Queue.deqOptions.

	
DeqOptions.condition

	This attribute specifies a boolean expression similar to the where clause
of a SQL query. The boolean expression can include conditions on message
properties, user data properties and PL/SQL or SQL functions. The default
is to have no condition specified.

	
DeqOptions.consumername

	This attribute specifies the name of the consumer. Only messages matching
the consumer name will be accessed. If the queue is not set up for multiple
consumers this attribute should not be set. The default is to have no
consumer name specified.

	
DeqOptions.correlation

	This attribute specifies the correlation identifier of the message to be
dequeued. Special pattern-matching characters, such as the percent sign (%)
and the underscore (_), can be used. If multiple messages satisfy the
pattern, the order of dequeuing is indeterminate. The default is to have no
correlation specified.

	
DeqOptions.deliverymode

	This write-only attribute specifies what types of messages should be
dequeued. It should be one of the values MSG_PERSISTENT
(default), MSG_BUFFERED or
MSG_PERSISTENT_OR_BUFFERED.

	
DeqOptions.mode

	This attribute specifies the locking behaviour associated with the dequeue
operation. It should be one of the values DEQ_BROWSE,
DEQ_LOCKED,
DEQ_REMOVE (default), or
DEQ_REMOVE_NODATA.

	
DeqOptions.msgid

	This attribute specifies the identifier of the message to be dequeued. The
default is to have no message identifier specified.

	
DeqOptions.navigation

	This attribute specifies the position of the message that is retrieved. It
should be one of the values DEQ_FIRST_MSG,
DEQ_NEXT_MSG (default), or
DEQ_NEXT_TRANSACTION.

	
DeqOptions.transformation

	This attribute specifies the name of the transformation that must be
applied after the message is dequeued from the database but before it is
returned to the calling application. The transformation must be created
using dbms_transform. The default is to have no transformation specified.

	
DeqOptions.visibility

	This attribute specifies the transactional behavior of the dequeue request.
It should be one of the values DEQ_ON_COMMIT (default)
or DEQ_IMMEDIATE. This attribute is ignored when using
the DEQ_BROWSE mode. Note the value of
autocommit is always ignored.

	
DeqOptions.wait

	This attribute specifies the time to wait, in seconds, for a message
matching the search criteria to become available for dequeuing. One of the
values DEQ_NO_WAIT or
DEQ_WAIT_FOREVER can also be used. The default is
DEQ_WAIT_FOREVER.

Enqueue Options

Note

These objects are used to configure how messages are enqueued into queues.
An instance of this object is found in the attribute
Queue.enqOptions.

	
EnqOptions.deliverymode

	This write-only attribute specifies what type of messages should be
enqueued. It should be one of the values MSG_PERSISTENT
(default) or MSG_BUFFERED.

	
EnqOptions.transformation

	This attribute specifies the name of the transformation that must be
applied before the message is enqueued into the database. The
transformation must be created using dbms_transform. The default is to have
no transformation specified.

	
EnqOptions.visibility

	This attribute specifies the transactional behavior of the enqueue request.
It should be one of the values ENQ_ON_COMMIT (default)
or ENQ_IMMEDIATE. Note the value of
autocommit is ignored.

Message Properties

Note

These objects are used to identify the properties of messages that are
enqueued and dequeued in queues. They are created by the method
Connection.msgproperties(). They are used by the methods
Queue.enqOne() and Queue.enqMany() and
returned by the methods Queue.deqOne() and Queue.deqMany().

	
MessageProperties.attempts

	This read-only attribute specifies the number of attempts that have been
made to dequeue the message.

	
MessageProperties.correlation

	This attribute specifies the correlation used when the message was
enqueued.

	
MessageProperties.delay

	This attribute specifies the number of seconds to delay an enqueued
message. Any integer is acceptable but the constant
MSG_NO_DELAY can also be used indicating that the
message is available for immediate dequeuing.

	
MessageProperties.deliverymode

	This read-only attribute specifies the type of message that was dequeued.
It will be one of the values MSG_PERSISTENT or
MSG_BUFFERED.

	
MessageProperties.enqtime

	This read-only attribute specifies the time that the message was enqueued.

	
MessageProperties.exceptionq

	This attribute specifies the name of the queue to which the message is
moved if it cannot be processed successfully. Messages are moved if the
number of unsuccessful dequeue attempts has exceeded the maximum number of
retries or if the message has expired. All messages in the exception queue
are in the MSG_EXPIRED state. The default value is the
name of the exception queue associated with the queue table.

	
MessageProperties.expiration

	This attribute specifies, in seconds, how long the message is available for
dequeuing. This attribute is an offset from the delay attribute. Expiration
processing requires the queue monitor to be running. Any integer is
accepted but the constant MSG_NO_EXPIRATION can also be
used indicating that the message never expires.

	
MessageProperties.msgid

	This attribute specifies the id of the message in the last queue that
generated this message.

	
MessageProperties.payload

	This attribute identifies the payload that will be enqueued or the payload
that was dequeued when using a queue. When enqueuing, the
value is checked to ensure that it conforms to the type expected by that
queue. For RAW queues, the value can be a bytes object or a string. If the
value is a string it will first be converted to bytes by encoding in the
encoding identified by the attribute Connection.encoding.

	
MessageProperties.priority

	This attribute specifies the priority of the message. A smaller number
indicates a higher priority. The priority can be any integer, including
negative numbers. The default value is zero.

	
MessageProperties.state

	This read-only attribute specifies the state of the message at the time of
the dequeue. It will be one of the values MSG_WAITING,
MSG_READY, MSG_PROCESSED or
MSG_EXPIRED.

SODA

Oracle Database Simple Oracle Document Access (SODA) [https://docs.oracle.com/en/database/oracle/simple-oracle-document-access]
allows documents to be inserted, queried, and retrieved from Oracle Database
using a set of NoSQL-style cx_Oracle methods.

See Simple Oracle Document Access (SODA) for a cx_Oracle example.

SODA requires Oracle Client 18.3 or higher and Oracle Database 18.1 and higher.
The role SODA_APP must be granted to the user.

See
this tracking issue [https://github.com/oracle/python-cx_Oracle/issues/309] for known issues with SODA.

SODA Database Object

Note

This object is an extension the DB API. It is returned by the method
Connection.getSodaDatabase().

	
SodaDatabase.createCollection(name, metadata=None, mapMode=False)

	Creates a SODA collection with the given name and returns a new
SODA collection object. If you try to create a
collection, and a collection with the same name and metadata already
exists, then that existing collection is opened without error.

If metadata is specified, it is expected to be a string containing valid
JSON or a dictionary that will be transformed into a JSON string. This JSON
permits you to specify the configuration of the collection including
storage options; specifying the presence or absence of columns for creation
timestamp, last modified timestamp and version; whether the collection can
store only JSON documents; and methods of key and version generation. The
default metadata creates a collection that only supports JSON documents and
uses system generated keys. See this collection metadata reference [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-49EFF3D3-9FAB-4DA6-BDE2-2650383566A3]
for more information.

If the mapMode parameter is set to True, the new collection is mapped to an
existing table instead of creating a table. If a collection is created in
this way, dropping the collection will not drop the existing table either.

New in version 7.0.

	
SodaDatabase.createDocument(content, key=None, mediaType="application/json")

	Creates a SODA document usable for SODA write operations.
You only need to use this method if your collection requires
client-assigned keys or has non-JSON content; otherwise, you can pass your
content directly to SODA write operations. SodaDocument attributes
‘createdOn’, ‘lastModified’ and ‘version’ will be None.

The content parameter can be a dictionary or list which will be transformed
into a JSON string and then UTF-8 encoded. It can also be a string which
will be UTF-8 encoded or it can be a bytes object which will be stored
unchanged. If a bytes object is provided and the content is expected to be
JSON, note that SODA only supports UTF-8, UTF-16LE and UTF-16BE encodings.

The key parameter should only be supplied if the collection in which the
document is to be placed requires client-assigned keys.

The mediaType parameter should only be supplied if the collection in which
the document is to be placed supports non-JSON documents and the content
for this document is non-JSON. Using a standard MIME type for this value is
recommended but any string will be accepted.

New in version 7.0.

	
SodaDatabase.getCollectionNames(startName=None, limit=0)

	Returns a list of the names of collections in the database that match the
criteria, in alphabetical order.

If the startName parameter is specified, the list of names returned will
start with this value and also contain any names that fall after this value
in alphabetical order.

If the limit parameter is specified and is non-zero, the number of
collection names returned will be limited to this value.

New in version 7.0.

	
SodaDatabase.openCollection(name)

	Opens an existing collection with the given name and returns a new
SODA collection object. If a collection with that name
does not exist, None is returned.

New in version 7.0.

SODA Collection Object

Note

This object is an extension the DB API. It is used to represent SODA
collections and is created by methods
SodaDatabase.createCollection() and
SodaDatabase.openCollection().

	
SodaCollection.createIndex(spec)

	Creates an index on a SODA collection. The spec is expected to be a
dictionary or a JSON-encoded string. See this overview [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-4848E6A0-58A7-44FD-8D6D-A033D0CCF9CB]
for information on indexes in SODA.

Note that a commit should be performed before attempting to create an
index.

New in version 7.0.

	
SodaCollection.drop()

	Drops the collection from the database, if it exists. Note that if the
collection was created with mapMode set to True the underlying table will
not be dropped.

A boolean value is returned indicating if the collection was actually
dropped.

New in version 7.0.

	
SodaCollection.dropIndex(name, force=False)

	Drops the index with the specified name, if it exists.

The force parameter, if set to True, can be used to force the dropping of
an index that the underlying Oracle Database domain index doesn’t normally
permit. This is only applicable to spatial and JSON search indexes.
See here [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-F60F75DF-2866-4F93-BB7F-8FCE64BF67B6]
for more information.

A boolean value is returned indicating if the index was actually dropped.

New in version 7.0.

	
SodaCollection.find()

	This method is used to begin an operation that will act upon documents in
the collection. It creates and returns a
SodaOperation object which is used to specify the criteria
and the operation that will be performed on the documents that match that
criteria.

New in version 7.0.

	
SodaCollection.getDataGuide()

	Returns a SODA document object containing property names,
data types and lengths inferred from the JSON documents in the collection.
It can be useful for exploring the schema of a collection. Note that this
method is only supported for JSON-only collections where a JSON search
index has been created with the ‘dataguide’ option enabled. If there are
no documents in the collection, None is returned.

New in version 7.0.

	
SodaCollection.insertMany(docs)

	Inserts a list of documents into the collection at one time. Each of the
input documents can be a dictionary or list or an existing SODA
document object.

Note

This method requires Oracle Client 18.5 and higher and is available
only as a preview.

New in version 7.2.

	
SodaCollection.insertManyAndGet(docs)

	Similarly to insertMany() this method inserts a
list of documents into the collection at one time. The only difference is
that it returns a list of SODA Document objects. Note that
for performance reasons the returned documents do not contain the content.

Note

This method requires Oracle Client 18.5 and higher.

New in version 7.2.

	
SodaCollection.insertOne(doc)

	Inserts a given document into the collection. The input document can be a
dictionary or list or an existing SODA document object.

New in version 7.0.

	
SodaCollection.insertOneAndGet(doc)

	Similarly to insertOne() this method inserts a
given document into the collection. The only difference is that it
returns a SODA Document object. Note that for performance
reasons the returned document does not contain the content.

New in version 7.0.

	
SodaCollection.metadata

	This read-only attribute returns a dictionary containing the metadata that
was used to create the collection. See this collection metadata reference [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-49EFF3D3-9FAB-4DA6-BDE2-2650383566A3]
for more information.

New in version 7.0.

	
SodaCollection.name

	This read-only attribute returns the name of the collection.

New in version 7.0.

SODA Document Object

Note

This object is an extension the DB API. It is returned by the methods
SodaDatabase.createDocument(),
SodaOperation.getDocuments() and
SodaOperation.getOne() as well as by iterating over
SODA document cursors.

	
SodaDoc.createdOn

	This read-only attribute returns the creation time of the document in
ISO 8601 [https://www.iso.org/iso-8601-date-and-time-format.html]
format. Documents created by SodaDatabase.createDocument() or
fetched from collections where this attribute is not stored will return
None.

New in version 7.0.

	
SodaDoc.getContent()

	Returns the content of the document as a dictionary or list. This method
assumes that the content is application/json and will raise an exception if
this is not the case. If there is no content, however, None will be
returned.

New in version 7.0.

	
SodaDoc.getContentAsBytes()

	Returns the content of the document as a bytes object. If there is no
content, however, None will be returned.

New in version 7.0.

	
SodaDoc.getContentAsString()

	Returns the content of the document as a string. If the document encoding
is not known, UTF-8 will be used. If there is no content, however, None
will be returned.

New in version 7.0.

	
SodaDoc.key

	This read-only attribute returns the unique key assigned to this document.
Documents created by SodaDatabase.createDocument() may not have a
value assigned to them and return None.

New in version 7.0.

	
SodaDoc.lastModified

	This read-only attribute returns the last modified time of the document in
ISO 8601 [https://www.iso.org/iso-8601-date-and-time-format.html]
format. Documents created by SodaDatabase.createDocument() or
fetched from collections where this attribute is not stored will return
None.

New in version 7.0.

	
SodaDoc.mediaType

	This read-only attribute returns the media type assigned to the document.
By convention this is expected to be a MIME type but no checks are
performed on this value. If a value is not specified when calling
SodaDatabase.createDocument() or the document is fetched from a
collection where this component is not stored, the string
“application/json” is returned.

New in version 7.0.

	
SodaDoc.version

	This read-only attribute returns the version assigned to this document.
Documents created by SodaDatabase.createDocument() or fetched
from collections where this attribute is not stored will return None.

New in version 7.0.

SODA Document Cursor Object

Note

This object is an extension the DB API. It is returned by the method
SodaOperation.getCursor() and implements the iterator protocol.
Each iteration will return a SODA document object.

	
SodaDocCursor.close()

	Close the cursor now, rather than whenever __del__ is called. The cursor
will be unusable from this point forward; an Error exception will be raised
if any operation is attempted with the cursor.

New in version 7.0.

SODA Operation Object

Note

This object is an extension to the DB API. It represents an operation that
will be performed on all or some of the documents in a SODA collection. It
is created by the method SodaCollection.find().

	
SodaOperation.count()

	Returns a count of the number of documents in the collection that match
the criteria. If skip() or
limit() were called on this object, an exception is
raised.

New in version 7.0.

	
SodaOperation.filter(value)

	Sets a filter specification for complex document queries and ordering of
JSON documents. Filter specifications must be provided as a dictionary or
JSON-encoded string and can include comparisons, regular expressions,
logical and spatial operators, among others. See the
overview of SODA filter specifications [https://www.oracle.com/pls/topic/lookup?ctx=dblatest&id=GUID-CB09C4E3-BBB1-40DC-88A8-8417821B0FBE]
for more information.

As a convenience, the SodaOperation object is returned so that further
criteria can be specified by chaining methods together.

New in version 7.0.

	
SodaOperation.getCursor()

	Returns a SODA Document Cursor object that can be used
to iterate over the documents that match the criteria.

New in version 7.0.

	
SodaOperation.getDocuments()

	Returns a list of SODA Document objects that match the
criteria.

New in version 7.0.

	
SodaOperation.getOne()

	Returns a single SODA Document object that matches the
criteria. Note that if multiple documents match the criteria only the first
one is returned.

New in version 7.0.

	
SodaOperation.key(value)

	Specifies that the document with the specified key should be returned.
This causes any previous calls made to this method and
keys() to be ignored.

As a convenience, the SodaOperation object is returned so that further
criteria can be specified by chaining methods together.

New in version 7.0.

	
SodaOperation.keys(seq)

	Specifies that documents that match the keys found in the supplied sequence
should be returned. This causes any previous calls made to this method and
key() to be ignored.

As a convenience, the SodaOperation object is returned so that further
criteria can be specified by chaining methods together.

New in version 7.0.

	
SodaOperation.limit(value)

	Specifies that only the specified number of documents should be returned.
This method is only usable for read operations such as
getCursor() and
getDocuments(). For write operations, any value set
using this method is ignored.

As a convenience, the SodaOperation object is returned so that further
criteria can be specified by chaining methods together.

New in version 7.0.

	
SodaOperation.remove()

	Removes all of the documents in the collection that match the criteria. The
number of documents that have been removed is returned.

New in version 7.0.

	
SodaOperation.replaceOne(doc)

	Replaces a single document in the collection with the specified document.
The input document can be a dictionary or list or an existing
SODA document object. A boolean indicating if a document
was replaced or not is returned.

Currently the method key() must be called before
this method can be called.

New in version 7.0.

	
SodaOperation.replaceOneAndGet(doc)

	Similarly to replaceOne(), this method replaces a
single document in the collection with the specified document. The only
difference is that it returns a SODA document object.
Note that for performance reasons the returned document does not contain
the content.

New in version 7.0.

	
SodaOperation.skip(value)

	Specifies the number of documents that match the other criteria that will
be skipped. This method is only usable for read operations such as
getCursor() and
getDocuments(). For write operations, any value set
using this method is ignored.

As a convenience, the SodaOperation object is returned so that further
criteria can be specified by chaining methods together.

New in version 7.0.

	
SodaOperation.version(value)

	Specifies that documents with the specified version should be returned.
Typically this is used with key() to implement
optimistic locking, so that the write operation called later does not
affect a document that someone else has modified.

As a convenience, the SodaOperation object is returned so that further
criteria can be specified by chaining methods together.

New in version 7.0.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 cx_Oracle	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__enter__() (Connection method)

 	(Cursor method)

 	__exit__() (Connection method)

 	(Cursor method)

 	
 	__future__ (in module cx_Oracle)

 	__iter__() (Cursor method)

 	__version__ (in module cx_Oracle)

A

 	
 	acquire() (SessionPool method)

 	action (Connection attribute)

 	actualElements (Variable attribute)

 	apilevel (in module cx_Oracle)

 	append() (Object method)

 	arraysize (Cursor attribute)

 	arrayvar() (Cursor method)

 	
 	asdict() (Object method)

 	aslist() (Object method)

 	attempts (MessageProperties attribute)

 	ATTR_PURITY_DEFAULT (in module cx_Oracle)

 	ATTR_PURITY_NEW (in module cx_Oracle)

 	ATTR_PURITY_SELF (in module cx_Oracle)

 	attributes (ObjectType attribute)

 	autocommit (Connection attribute)

B

 	
 	begin() (Connection method)

 	BFILE (in module cx_Oracle)

 	BINARY (in module cx_Oracle)

 	Binary() (in module cx_Oracle)

 	bindarraysize (Cursor attribute)

 	bindnames() (Cursor method)

 	
 	bindvars (Cursor attribute)

 	BLOB (in module cx_Oracle)

 	BOOLEAN (in module cx_Oracle)

 	bufferSize (Variable attribute)

 	buildtime (in module cx_Oracle)

 	busy (SessionPool attribute)

C

 	
 	callback (Subscription attribute)

 	callfunc() (Cursor method)

 	callproc() (Cursor method)

 	callTimeout (Connection attribute)

 	cancel() (Connection method)

 	changepassword() (Connection method)

 	client_identifier (Connection attribute)

 	clientinfo (Connection attribute)

 	clientversion() (in module cx_Oracle)

 	CLOB (in module cx_Oracle)

 	close() (Connection method)

 	(Cursor method)

 	(LOB method)

 	(SessionPool method)

 	(SodaDocCursor method)

 	code (cx_Oracle._Error attribute)

 	commit() (Connection method)

 	condition (DeqOptions attribute)

 	connect() (in module cx_Oracle)

 	connection (Cursor attribute)

 	(Queue attribute)

 	(Subscription attribute)

 	
 	Connection() (in module cx_Oracle)

 	consumername (DeqOptions attribute)

 	consumerName (Message attribute)

 	context (cx_Oracle._Error attribute)

 	copy() (Object method)

 	correlation (DeqOptions attribute)

 	(MessageProperties attribute)

 	count() (SodaOperation method)

 	createCollection() (SodaDatabase method)

 	createDocument() (SodaDatabase method)

 	createdOn (SodaDoc attribute)

 	createIndex() (SodaCollection method)

 	createlob() (Connection method)

 	current_schema (Connection attribute)

 	CURSOR (in module cx_Oracle)

 	cursor() (Connection method)

 	Cursor() (in module cx_Oracle)

 	Cursor.description (built-in variable)

 	cx_Oracle (module)

D

 	
 	DatabaseError

 	DataError

 	Date() (in module cx_Oracle)

 	DateFromTicks() (in module cx_Oracle)

 	DATETIME (in module cx_Oracle)

 	dbname (Message attribute)

 	dbop (Connection attribute)

 	DBSHUTDOWN_ABORT (in module cx_Oracle)

 	DBSHUTDOWN_FINAL (in module cx_Oracle)

 	DBSHUTDOWN_IMMEDIATE (in module cx_Oracle)

 	DBSHUTDOWN_TRANSACTIONAL (in module cx_Oracle)

 	DBSHUTDOWN_TRANSACTIONAL_LOCAL (in module cx_Oracle)

 	DEFAULT_AUTH (in module cx_Oracle)

 	delay (MessageProperties attribute)

 	delete() (Object method)

 	deliverymode (DeqOptions attribute)

 	(EnqOptions attribute)

 	(MessageProperties attribute)

 	deq() (Connection method)

 	
 	DEQ_BROWSE (in module cx_Oracle)

 	DEQ_FIRST_MSG (in module cx_Oracle)

 	DEQ_IMMEDIATE (in module cx_Oracle)

 	DEQ_LOCKED (in module cx_Oracle)

 	DEQ_NEXT_MSG (in module cx_Oracle)

 	DEQ_NEXT_TRANSACTION (in module cx_Oracle)

 	DEQ_NO_WAIT (in module cx_Oracle)

 	DEQ_ON_COMMIT (in module cx_Oracle)

 	DEQ_REMOVE (in module cx_Oracle)

 	DEQ_REMOVE_NODATA (in module cx_Oracle)

 	DEQ_WAIT_FOREVER (in module cx_Oracle)

 	deqMany() (Queue method)

 	deqOne() (Queue method)

 	deqOptions (Queue attribute)

 	deqoptions() (Connection method)

 	drop() (SessionPool method)

 	(SodaCollection method)

 	dropIndex() (SodaCollection method)

 	dsn (Connection attribute)

 	(SessionPool attribute)

E

 	
 	edition (Connection attribute)

 	encoding (Connection attribute)

 	enq() (Connection method)

 	ENQ_IMMEDIATE (in module cx_Oracle)

 	ENQ_ON_COMMIT (in module cx_Oracle)

 	enqMany() (Queue method)

 	enqOne() (Queue method)

 	enqOptions (Queue attribute)

 	enqoptions() (Connection method)

 	enqtime (MessageProperties attribute)

 	Error

 	EVENT_AQ (in module cx_Oracle)

 	EVENT_DEREG (in module cx_Oracle)

 	
 	EVENT_NONE (in module cx_Oracle)

 	EVENT_OBJCHANGE (in module cx_Oracle)

 	EVENT_QUERYCHANGE (in module cx_Oracle)

 	EVENT_SHUTDOWN (in module cx_Oracle)

 	EVENT_SHUTDOWN_ANY (in module cx_Oracle)

 	EVENT_STARTUP (in module cx_Oracle)

 	exceptionq (MessageProperties attribute)

 	execute() (Cursor method)

 	executemany() (Cursor method)

 	executemanyprepared() (Cursor method)

 	exists() (Object method)

 	expiration (MessageProperties attribute)

 	extend() (Object method)

 	external_name (Connection attribute)

F

 	
 	fetchall() (Cursor method)

 	fetchmany() (Cursor method)

 	fetchone() (Cursor method)

 	fetchraw() (Cursor method)

 	fetchvars (Cursor attribute)

 	
 	fileexists() (LOB method)

 	filter() (SodaOperation method)

 	find() (SodaCollection method)

 	first() (Object method)

 	FIXED_CHAR (in module cx_Oracle)

 	FIXED_NCHAR (in module cx_Oracle)

G

 	
 	getarraydmlrowcounts() (Cursor method)

 	getbatcherrors() (Cursor method)

 	getchunksize() (LOB method)

 	getCollectionNames() (SodaDatabase method)

 	getContent() (SodaDoc method)

 	getContentAsBytes() (SodaDoc method)

 	getContentAsString() (SodaDoc method)

 	getCursor() (SodaOperation method)

 	
 	getDataGuide() (SodaCollection method)

 	getDocuments() (SodaOperation method)

 	getelement() (Object method)

 	getfilename() (LOB method)

 	getimplicitresults() (Cursor method)

 	getOne() (SodaOperation method)

 	getSodaDatabase() (Connection method)

 	gettype() (Connection method)

 	getvalue() (Variable method)

H

 	
 	handle (Connection attribute)

 	
 	homogeneous (SessionPool attribute)

I

 	
 	id (MessageQuery attribute)

 	(Subscription attribute)

 	inconverter (Variable attribute)

 	increment (SessionPool attribute)

 	inputtypehandler (Connection attribute)

 	(Cursor attribute)

 	insertMany() (SodaCollection method)

 	insertManyAndGet() (SodaCollection method)

 	insertOne() (SodaCollection method)

 	
 	insertOneAndGet() (SodaCollection method)

 	IntegrityError

 	InterfaceError

 	internal_name (Connection attribute)

 	InternalError

 	INTERVAL (in module cx_Oracle)

 	ipAddress (Subscription attribute)

 	iscollection (ObjectType attribute)

 	isopen() (LOB method)

 	isrecoverable (cx_Oracle._Error attribute)

K

 	
 	key (SodaDoc attribute)

 	
 	key() (SodaOperation method)

 	keys() (SodaOperation method)

L

 	
 	last() (Object method)

 	lastModified (SodaDoc attribute)

 	limit() (SodaOperation method)

 	
 	LOB (in module cx_Oracle)

 	LONG_BINARY (in module cx_Oracle)

 	LONG_STRING (in module cx_Oracle)

 	ltxid (Connection attribute)

M

 	
 	makedsn() (in module cx_Oracle)

 	max (SessionPool attribute)

 	max_lifetime_session (SessionPool attribute)

 	maxBytesPerCharacter (Connection attribute)

 	mediaType (SodaDoc attribute)

 	message (cx_Oracle._Error attribute)

 	metadata (SodaCollection attribute)

 	min (SessionPool attribute)

 	mode (DeqOptions attribute)

 	module (Connection attribute)

 	MSG_BUFFERED (in module cx_Oracle)

 	
 	MSG_EXPIRED (in module cx_Oracle)

 	MSG_NO_DELAY (in module cx_Oracle)

 	MSG_NO_EXPIRATION (in module cx_Oracle)

 	MSG_PERSISTENT (in module cx_Oracle)

 	MSG_PERSISTENT_OR_BUFFERED (in module cx_Oracle)

 	MSG_PROCESSED (in module cx_Oracle)

 	MSG_READY (in module cx_Oracle)

 	MSG_WAITING (in module cx_Oracle)

 	msgid (DeqOptions attribute)

 	(MessageProperties attribute)

 	msgproperties() (Connection method)

N

 	
 	name (MessageTable attribute)

 	(ObjectType attribute)

 	(Queue attribute)

 	(SessionPool attribute)

 	(SodaCollection attribute)

 	(Subscription attribute)

 	namespace (Subscription attribute)

 	NATIVE_FLOAT (in module cx_Oracle)

 	NATIVE_INT (in module cx_Oracle)

 	
 	navigation (DeqOptions attribute)

 	NCHAR (in module cx_Oracle)

 	NCLOB (in module cx_Oracle)

 	nencoding (Connection attribute)

 	newobject() (ObjectType method)

 	next() (Object method)

 	NotSupportedError

 	NUMBER (in module cx_Oracle)

 	numElements (Variable attribute)

O

 	
 	OBJECT (in module cx_Oracle)

 	ObjectType()

 	offset (cx_Oracle._Error attribute)

 	OPCODE_ALLOPS (in module cx_Oracle)

 	OPCODE_ALLROWS (in module cx_Oracle)

 	OPCODE_ALTER (in module cx_Oracle)

 	OPCODE_DELETE (in module cx_Oracle)

 	OPCODE_DROP (in module cx_Oracle)

 	OPCODE_INSERT (in module cx_Oracle)

 	OPCODE_UPDATE (in module cx_Oracle)

 	
 	open() (LOB method)

 	openCollection() (SodaDatabase method)

 	opened (SessionPool attribute)

 	operation (MessageQuery attribute)

 	(MessageRow attribute)

 	(MessageTable attribute)

 	OperationalError

 	operations (Subscription attribute)

 	outconverter (Variable attribute)

 	outputtypehandler (Connection attribute)

 	(Cursor attribute)

P

 	
 	paramstyle (in module cx_Oracle)

 	parse() (Cursor method)

 	payload (MessageProperties attribute)

 	payloadType (Queue attribute)

 	ping() (Connection method)

 	port (Subscription attribute)

 	
 	PRELIM_AUTH (in module cx_Oracle)

 	prepare() (Connection method)

 	(Cursor method)

 	prev() (Object method)

 	priority (MessageProperties attribute)

 	ProgrammingError

 	protocol (Subscription attribute)

Q

 	
 	qos (Subscription attribute)

 	queries (Message attribute)

 	
 	queue() (Connection method)

 	queueName (Message attribute)

R

 	
 	read() (LOB method)

 	registered (Message attribute)

 	registerquery() (Subscription method)

 	release() (SessionPool method)

 	remove() (SodaOperation method)

 	replaceOne() (SodaOperation method)

 	
 	replaceOneAndGet() (SodaOperation method)

 	rollback() (Connection method)

 	rowcount (Cursor attribute)

 	rowfactory (Cursor attribute)

 	ROWID (in module cx_Oracle)

 	rowid (MessageRow attribute)

 	rows (MessageTable attribute)

S

 	
 	schema (ObjectType attribute)

 	scroll() (Cursor method)

 	scrollable (Cursor attribute)

 	SessionPool() (in module cx_Oracle)

 	setelement() (Object method)

 	setfilename() (LOB method)

 	setinputsizes() (Cursor method)

 	setoutputsize() (Cursor method)

 	setvalue() (Variable method)

 	shutdown() (Connection method)

 	size (Variable attribute)

 	size() (LOB method)

 	(Object method)

 	skip() (SodaOperation method)

 	SPOOL_ATTRVAL_FORCEGET (in module cx_Oracle)

 	SPOOL_ATTRVAL_NOWAIT (in module cx_Oracle)

 	SPOOL_ATTRVAL_TIMEDWAIT (in module cx_Oracle)

 	SPOOL_ATTRVAL_WAIT (in module cx_Oracle)

 	startup() (Connection method)

 	state (MessageProperties attribute)

 	statement (Cursor attribute)

 	stmtcachesize (Connection attribute)

 	(SessionPool attribute)

 	
 	STRING (in module cx_Oracle)

 	SUBSCR_GROUPING_CLASS_TIME (in module cx_Oracle)

 	SUBSCR_GROUPING_TYPE_LAST (in module cx_Oracle)

 	SUBSCR_GROUPING_TYPE_SUMMARY (in module cx_Oracle)

 	SUBSCR_NAMESPACE_AQ (in module cx_Oracle)

 	SUBSCR_NAMESPACE_DBCHANGE (in module cx_Oracle)

 	SUBSCR_PROTO_HTTP (in module cx_Oracle)

 	SUBSCR_PROTO_MAIL (in module cx_Oracle)

 	SUBSCR_PROTO_OCI (in module cx_Oracle)

 	SUBSCR_PROTO_SERVER (in module cx_Oracle)

 	SUBSCR_QOS_BEST_EFFORT (in module cx_Oracle)

 	SUBSCR_QOS_DEREG_NFY (in module cx_Oracle)

 	SUBSCR_QOS_QUERY (in module cx_Oracle)

 	SUBSCR_QOS_RELIABLE (in module cx_Oracle)

 	SUBSCR_QOS_ROWIDS (in module cx_Oracle)

 	subscribe() (Connection method)

 	subscription (Message attribute)

 	SYSASM (in module cx_Oracle)

 	SYSBKP (in module cx_Oracle)

 	SYSDBA (in module cx_Oracle)

 	SYSDGD (in module cx_Oracle)

 	SYSKMT (in module cx_Oracle)

 	SYSOPER (in module cx_Oracle)

 	SYSRAC (in module cx_Oracle)

T

 	
 	tables (Message attribute)

 	(MessageQuery attribute)

 	tag (Connection attribute)

 	threadsafety (in module cx_Oracle)

 	Time() (in module cx_Oracle)

 	TimeFromTicks() (in module cx_Oracle)

 	timeout (SessionPool attribute)

 	(Subscription attribute)

 	TIMESTAMP (in module cx_Oracle)

 	Timestamp() (in module cx_Oracle)

 	
 	TimestampFromTicks() (in module cx_Oracle)

 	tnsentry (Connection attribute)

 	(SessionPool attribute)

 	transformation (DeqOptions attribute)

 	(EnqOptions attribute)

 	trim() (LOB method)

 	(Object method)

 	txid (Message attribute)

 	type (Message attribute)

 	(Variable attribute)

U

 	
 	unsubscribe() (Connection method)

 	
 	username (Connection attribute)

 	(SessionPool attribute)

V

 	
 	values (Variable attribute)

 	var() (Cursor method)

 	version (Connection attribute)

 	(SodaDoc attribute)

 	(in module cx_Oracle)

 	
 	version() (SodaOperation method)

 	visibility (DeqOptions attribute)

 	(EnqOptions attribute)

W

 	
 	wait (DeqOptions attribute)

 	wait_timeout (SessionPool attribute)

 	
 	Warning

 	write() (LOB method)

License

LICENSE AGREEMENT FOR CX_ORACLE
Copyright © 2016, 2018, Oracle and/or its affiliates. All rights reserved.

Copyright © 2007-2015, Anthony Tuininga. All rights reserved.

Copyright © 2001-2007, Computronix (Canada) Ltd., Edmonton, Alberta,
Canada. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions, and the disclaimer that follows.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions, and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the names of the copyright holders nor the names of any contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Computronix ® is a registered trademark of Computronix (Canada) Ltd.

cx_Oracle Release Notes

Version 7.2.3 (October 2019)

	Updated embedded ODPI-C to version 3.2.2 [https://oracle.github.io/odpi/doc/releasenotes.html#version-3-2-2-october-1-2019].

	Restored support for setting numeric bind variables with boolean values.

	Ensured that sharding keys are dedicated to the connection that is acquired
using them in order to avoid possible hangs, crashes or unusual errors.

	Corrected support for PLS_INTEGER and BINARY_INTEGER types when used in
PL/SQL records
(ODPI-C issue 112 [https://github.com/oracle/odpi/issues/112]).

	Improved documentation.

Version 7.2.2 (August 2019)

	Updated embedded ODPI-C to version 3.2.1 [https://oracle.github.io/odpi/doc/releasenotes.html#version-3-2-1-august-12-2019].

	A more meaningful error is now returned when calling
SodaCollection.insertMany() with an empty list.

	A more meaningful error is now returned when calling
Subscription.registerquery() with SQL that is not a SELECT
statement.

	Eliminated segfault when a connection is closed after being created by a
call to cx_Oracle.connect() with the parameter cclass set to
a non-empty string.

	Added user guide documentation.

	Updated default connect strings to use 19c and XE 18c defaults.

Version 7.2.1 (July 2019)

	Resolved MemoryError exception on Windows when using an output type
handler
(issue 330 [https://github.com/oracle/python-cx_Oracle/issues/330]).

	Improved test suite and samples.

	Improved documentation.

Version 7.2 (July 2019)

	Updated embedded ODPI-C to version 3.2 [https://oracle.github.io/odpi/doc/releasenotes.html#version-3-2-july-1-2019].

	Improved AQ support

	added support for enqueue and dequeue of RAW payloads

	added support for bulk enqueue and dequeue of messages

	added new method Connection.queue() which creates a new
queue object in order to simplify AQ usage

	enhanced method Connection.msgproperties() to allow the writable
properties of the newly created object to be initialized.

	the original methods for enqueueing and dequeuing (Connection.deq(),
Connection.deqoptions(), Connection.enq() and Connection.enqoptions())
are now deprecated and will be removed in a future version.

	Removed preview status from existing SODA functionality. See
this tracking issue [https://github.com/oracle/python-cx_Oracle/issues/309] for known issues
with SODA.

	Added support for a preview of SODA bulk insert, available in Oracle Client
18.5 and higher.

	Added support for setting LOB object attributes, as requested
(issue 299 [https://github.com/oracle/python-cx_Oracle/issues/299]).

	Added mode cx_Oracle.DEFAULT_AUTH as requested
(issue 293 [https://github.com/oracle/python-cx_Oracle/issues/293]).

	Added support for setting the LOB prefetch length indicator in order to
reduce the number of round trips when fetching LOBs and then subsequently
calling LOB.size(), LOB.getchunksize() or
LOB.read().

	Added support for types BINARY_INTEGER, PLS_INTEGER, ROWID, LONG and LONG
RAW when used in PL/SQL.

	Eliminated deprecation of attribute Subscription.id. It is now
populated with the value of REGID found in the database view
USER_CHANGE_NOTIFICATION_REGS or the value of REG_ID found in the
database view USER_SUBSCR_REGISTRATIONS. For AQ subscriptions, the
value is 0.

	Enabled PY_SSIZE_T_CLEAN, as required by Python 3.8
(issue 317 [https://github.com/oracle/python-cx_Oracle/issues/317]).

	Eliminated memory leak when fetching objects that are atomically null
(issue 298 [https://github.com/oracle/python-cx_Oracle/issues/298]).

	Eliminated bug when processing the string representation of numbers like
1e-08 and 1e-09 (issue 300 [https://github.com/oracle/python-cx_Oracle/issues/300]).

	Improved error message when the parent cursor is closed before a fetch is
attempted from an implicit result cursor.

	Improved test suite and samples.

	Improved documentation.

Version 7.1.3 (April 2019)

	Updated to ODPI-C 3.1.4 [https://oracle.github.io/odpi/doc/releasenotes.html#version-3-1-4-april-24-2019].

	Added support for getting the row count for PL/SQL statements
(issue 285 [https://github.com/oracle/python-cx_Oracle/issues/285]).

	Corrected parsing of connect string so that the last @ symbol is searched
for instead of the first @ symbol; otherwise, passwords containing an @
symbol will result in the incorrect DSN being extracted
(issue 290 [https://github.com/oracle/python-cx_Oracle/issues/290]).

	Adjusted return value of cursor.callproc() to follow documentation (only
positional arguments are returned since the order of keyword parameters
cannot be guaranteed in any case)
(PR 287 [https://github.com/oracle/python-cx_Oracle/pull/287]).

	Corrected code getting sample and test parameters by user input when using
Python 2.7.

Version 7.1.2 (March 2019)

	Updated to ODPI-C 3.1.3 [https://oracle.github.io/odpi/doc/releasenotes.html#version-3-1-3-march-12-2019].

	Ensured that the strings “-0” and “-0.0” are correctly handled as zero
values
(issue 274 [https://github.com/oracle/python-cx_Oracle/issues/274]).

	Eliminated error when startup and shutdown events are generated
(ODPI-C issue 102 [https://github.com/oracle/odpi/issues/102]).

	Enabled the types specified in Cursor.setinputsizes() and
Cursor.callfunc() to be an object type in addition to a Python
type, just like in Cursor.var().

	Reverted changes to return decimal numbers when the numeric precision was
too great to be returned accurately as a floating point number. This change
had too great an impact on existing functionality and an output type
handler can be used to return decimal numbers where that is desirable
(issue 279 [https://github.com/oracle/python-cx_Oracle/issues/279]).

	Eliminated discrepancies in character sets between an external connection
handle and the newly created connection handle that references the external
connection handle
(issue 273 [https://github.com/oracle/python-cx_Oracle/issues/273]).

	Eliminated memory leak when receiving messages received from subscriptions.

	Improved test suite and documentation.

Version 7.1.1 (February 2019)

	Updated to ODPI-C 3.1.2 [https://oracle.github.io/odpi/doc/releasenotes.html#version-3-1-2-february-19-2019].

	Corrected code for freeing CQN message objects when multiple queries are
registered
(ODPI-C issue 96 [https://github.com/oracle/odpi/issues/96]).

	Improved error messages and installation documentation.

Version 7.1 (February 2019)

	Updated to ODPI-C 3.1 [https://oracle.github.io/odpi/doc/releasenotes.html#version-3-1-january-21-2019].

	Improved support for session tagging in session pools by allowing a
session callback to be specified when creating a pool via
cx_Oracle.SessionPool(). Callbacks can be written in Python or in
PL/SQL and can be used to improve performance by decreasing round trips to
the database needed to set session state. Callbacks written in Python will
be invoked for brand new connections (that have never been acquired from
the pool before) or when the tag assigned to the connection doesn’t match
the one that was requested. Callbacks written in PL/SQL will only be
invoked when the tag assigned to the connection doesn’t match the one that
was requested.

	Added attribute Connection.tag to provide access to the actual tag
assigned to the connection. Setting this attribute will cause the
connection to be retagged when it is released back to the pool.

	Added support for fetching SYS.XMLTYPE values as strings, as requested
(issue 14 [https://github.com/oracle/python-cx_Oracle/issues/14]).
Note that this support is limited to the size of VARCHAR2 columns in the
database (either 4000 or 32767 bytes).

	Added support for allowing the typename parameter in method
Cursor.var() to be None or a valid object type created by the
method Connection.gettype(), as requested
(issue 231 [https://github.com/oracle/python-cx_Oracle/issues/231]).

	Added support for getting and setting attributes of type RAW on Oracle
objects, as requested
(ODPI-C issue 72 [https://github.com/oracle/odpi/issues/72]).

	Added support for performing external authentication with proxy for
standalone connections.

	Added support for mixing integers, floating point and decimal values in
data passed to Cursor.executemany()
(issue 241 [https://github.com/oracle/python-cx_Oracle/issues/241]).
The error message raised when a value cannot be converted to an Oracle
number was also improved.

	Adjusted fetching of numeric values so that no precision is lost. If an
Oracle number cannot be represented by a Python floating point number a
decimal value is automatically returned instead.

	Corrected handling of multiple calls to method
Cursor.executemany() where all of the values in one of the columns
passed to the first call are all None and a subsequent call has a value
other than None in the same column
(issue 236 [https://github.com/oracle/python-cx_Oracle/issues/236]).

	Added additional check for calling Cursor.setinputsizes() with an
empty dictionary in order to avoid the error “cx_Oracle.ProgrammingError:
positional and named binds cannot be intermixed”
(issue 199 [https://github.com/oracle/python-cx_Oracle/issues/199]).

	Corrected handling of values that exceed the maximum value of a plain
integer object on Python 2 on Windows
(issue 257 [https://github.com/oracle/python-cx_Oracle/issues/257]).

	Added error message when attempting external authentication with proxy
without placing the user name in [] (proxy authentication was previously
silently ignored).

	Exempted additional error messages from forcing a statement to be dropped
from the cache
(ODPI-C issue 76 [https://github.com/oracle/odpi/issues/76]).

	Improved dead session detection when using session pools for Oracle Client
12.2 and higher.

	Ensured that the connection returned from a pool after a failed ping (such
as due to a killed session) is not itself marked as needing to be dropped
from the pool.

	Eliminated memory leak under certain circumstances when pooled connections
are released back to the pool.

	Eliminated memory leak when connections are dropped from the pool.

	Eliminated memory leak when calling Connection.close() after
fetching collections from the database.

	Adjusted order in which memory is freed when the last references to SODA
collections, documents, document cursors and collection cursors are
released, in order to prevent a segfault under certain circumstances.

	Improved code preventing a statement from binding itself, in order to avoid
a potential segfault under certain circumstances.

	Worked around OCI bug when attempting to free objects that are PL/SQL
records, in order to avoid a potential segfault.

	Improved test suite and samples. Note that default passwords are no longer
supplied. New environment variables can be set to specify passwords if
desired, or the tests and samples will prompt for the passwords when
needed. In addition, a Python script is now available to create and drop
the schemas used for the tests and samples.

	Improved documentation.

Version 7.0 (September 2018)

	Update to ODPI-C 3.0 [https://oracle.github.io/odpi/doc/releasenotes.html#version-3-0-0-september-13-2018].

	Added support for Oracle Client 18 libraries.

	Added support for SODA (as preview). See SODA Database,
SODA Collection and SODA Document for
more information.

	Added support for call timeouts available in Oracle Client 18.1 and
higher. See Connection.callTimeout.

	Added support for getting the contents of a SQL collection object as a
dictionary, where the keys are the indices of the collection and the values
are the elements of the collection. See function Object.asdict().

	Added support for closing a session pool via the function
SessionPool.close(). Once closed, further attempts to use any
connection that was acquired from the pool will result in the error
“DPI-1010: not connected”.

	Added support for setting a LOB attribute of an object with a string or
bytes (instead of requiring a temporary LOB to be created).

	Added support for the packed decimal type used by object attributes with
historical types DECIMAL and NUMERIC
(issue 212 [https://github.com/oracle/python-cx_Oracle/issues/212]).

	On Windows, first attempt to load oci.dll from the same directory as
the cx_Oracle module.

	SQL objects that are created or fetched from the database are now tracked
and marked unusable when a connection is closed. This was done in order
to avoid a segfault under certain circumstances.

	Re-enabled dead session detection functionality when using pools for Oracle
Client 12.2 and higher in order to handle classes of connection errors such
as resource profile limits.

	Improved error messages when the Oracle Client or Oracle Database need to
be at a minimum version in order to support a particular feature.

	When a connection is used as a context manager, the connection is now
closed when the block ends. Attempts to set
cx_Oracle.__future__.ctx_mgr_close are now ignored.

	When a DML returning statement is executed, variables bound to it will
return an array when calling Variable.getvalue(). Attempts to set
cx_Oracle.__future__.dml_ret_array_val are now ignored.

	Support for Python 3.4 has been dropped.

	Added additional test cases.

	Improved documentation.

Version 6.4.1 (July 2018)

	Update to ODPI-C 2.4.2 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-4-2-july-9-2018].

	Avoid buffer overrun due to improper calculation of length byte when
converting some negative 39 digit numbers from string to the internal
Oracle number format
(ODPI-C issue 67 [https://github.com/oracle/odpi/issues/67]).

	Prevent error “cx_Oracle.ProgrammingError: positional and named binds
cannot be intermixed” when calling cursor.setinputsizes() without any
parameters and then calling cursor.execute() with named bind parameters
(issue 199 [https://github.com/oracle/python-cx_Oracle/issues/199]).

Version 6.4 (July 2018)

	Update to ODPI-C 2.4.1 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-4-1-july-2-2018].

	Added support for grouping subscriptions. See parameters groupingClass,
groupingValue and groupingType to function
Connection.subscribe().

	Added support for specifying the IP address a subscription should use
instead of having the Oracle Client library determine the IP address on
its own. See parameter ipAddress to function
Connection.subscribe().

	Added support for subscribing to notifications when messages are
available to dequeue in an AQ queue. The new constant
cx_Oracle.SUBSCR_NAMESPACE_AQ should be passed to the namespace
parameter of function Connection.subscribe() in order to get this
functionality. Attributes Message.queueName and
Message.consumerName will be populated in notification messages
that are received when this namespace is used.

	Added attribute Message.registered to let the notification
callback know when the subscription that generated the notification is no
longer registered with the database.

	Added support for timed waits when acquiring a session from a session
pool. Use the new constant cx_Oracle.SPOOL_ATTRVAL_TIMEDWAIT in
the parameter getmode to function cx_Oracle.SessionPool() along
with the new parameter waitTimeout.

	Added support for specifying the timeout and maximum lifetime session for
session pools when they are created using function
cx_Oracle.SessionPool(). Previously the pool had to be created
before these values could be changed.

	Avoid memory leak when dequeuing from an empty queue.

	Ensure that the row count for queries is reset to zero when the statement
is executed
(issue 193 [https://github.com/oracle/python-cx_Oracle/issues/193]).

	If the statement should be deleted from the statement cache, first check
to see that there is a statement cache currently being used; otherwise,
the error “ORA-24300: bad value for mode” will be raised under certain
conditions.

	Added support for using the cursor as a context manager
(issue 190 [https://github.com/oracle/python-cx_Oracle/issues/190]).

	Added parameter “encodingErrors” to function Cursor.var() in order
to add support for specifying the “errors” parameter to the decode() that
takes place internally when fetching strings from the database
(issue 162 [https://github.com/oracle/python-cx_Oracle/issues/162]).

	Added support for specifying an integer for the parameters argument to
Cursor.executemany(). This allows for batch execution when no
parameters are required or when parameters have previously been bound. This
replaces Cursor.executemanyprepared() (which is now deprecated and will be
removed in cx_Oracle 7).

	Adjusted the binding of booleans so that outside of PL/SQL they are bound
as integers
(issue 181 [https://github.com/oracle/python-cx_Oracle/issues/181]).

	Added support for binding decimal.Decimal values to cx_Oracle.NATIVE_FLOAT
as requested
(issue 184 [https://github.com/oracle/python-cx_Oracle/issues/184]).

	Added checks on passing invalid type parameters to methods
Cursor.arrayvar(), Cursor.callfunc() and
Cursor.setinputsizes().

	Corrected handling of cursors and rowids in DML Returning statements.

	Added sample from David Lapp demonstrating the use of GeoPandas with
SDO_GEOMETRY and a sample for demonstrating the use of REF cursors.

	Adjusted samples and documentation for clarity.

	Added additional test cases.

Version 6.3.1 (May 2018)

	Update to ODPI-C 2.3.2 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-3-2-may-7-2018].

	Ensure that a call to unregister a subscription only occurs if the
subscription is still registered.

	Ensure that before a statement is executed any buffers used for DML
returning statements are reset.

	Ensure that behavior with cx_Oracle.__future__.dml_ret_array_val not
set or False is the same as the behavior in cx_Oracle 6.2
(issue 176 [https://github.com/oracle/python-cx_Oracle/issues/176]).

Version 6.3 (April 2018)

	Update to ODPI-C 2.3.1 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-3-1-april-25-2018].

	Fixed binding of LONG data (values exceeding 32KB) when using the
function Cursor.executemany().

	Added code to verify that a CQN subscription is open before permitting it
to be used. Error “DPI-1060: subscription was already closed” will now be
raised if an attempt is made to use a subscription that was closed
earlier.

	Stopped attempting to unregister a CQN subscription before it was
completely registered. This prevents errors encountered during
registration from being masked by an error stating that the subscription
has not been registered!

	Added error “DPI-1061: edition is not supported when a new password is
specified” to clarify the fact that specifying an edition and a new
password at the same time is not supported when creating a connection.
Previously the edition value was simply ignored.

	Improved error message when older OCI client libraries are being used
that don’t have the method OCIClientVersion().

	Fixed the handling of ANSI types REAL and DOUBLE PRECISION as
implemented by Oracle. These types are just subtypes of NUMBER and are
different from BINARY_FLOAT and BINARY_DOUBLE
(issue 163 [https://github.com/oracle/python-cx_Oracle/issues/163]).

	Fixed support for true heterogeneous session pools that use different
user/password combinations for each session acquired from the pool.

	Added error message indicating that setting either of the parameters
arraydmlrowcounts and batcherrors to True in Cursor.executemany()
is only supported with insert, update, delete and merge statements.

	Fixed support for getting the OUT values of bind variables bound to a DML
Returning statement when calling the function Cursor.executemany().
Note that the attribute dml_ret_array_val in cx_Oracle.__future__
must be set to True first.

	Added support for binding integers and floats as cx_Oracle.NATIVE_FLOAT.

	A cx_Oracle._Error object is now the value of all cx_Oracle
exceptions raised by cx_Oracle.
(issue 51 [https://github.com/oracle/python-cx_Oracle/issues/51]).

	Added support for building cx_Oracle with a pre-compiled version of ODPI-C,
as requested
(issue 103 [https://github.com/oracle/python-cx_Oracle/issues/103]).

	Default values are now provided for all parameters to
cx_Oracle.SessionPool().

	Improved error message when an unsupported Oracle type is encountered.

	The Python GIL is now prevented from being held while performing a round
trip for the call to get the attribute Connection.version
(issue 158 [https://github.com/oracle/python-cx_Oracle/issues/158]).

	Added check for the validity of the year for Python 2.x since it doesn’t do
that itself like Python 3.x does
(issue 166 [https://github.com/oracle/python-cx_Oracle/issues/166]).

	Adjusted documentation to provide additional information on the use of
Cursor.executemany() as requested
(issue 153 [https://github.com/oracle/python-cx_Oracle/issues/153]).

	Adjusted documentation to state that batch errors and array DML row counts
can only be used with insert, update, delete and merge statements
(issue 31 [https://github.com/oracle/python-cx_Oracle/issues/31]).

	Updated tutorial to import common connection information from files in
order to make setup a bit more generic.

Version 6.2.1 (March 2018)

	Make sure cxoModule.h is included in the source archive
(issue 155 [https://github.com/oracle/python-cx_Oracle/issues/155]).

Version 6.2 (March 2018)

	Update to ODPI-C 2.2.1 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-2-1-march-5-2018].

	eliminate error “DPI-1054: connection cannot be closed when open
statements or LOBs exist” (issue 138 [https://github.com/oracle/python-cx_Oracle/issues/138]).

	avoid a round trip to the database when a connection is released back to
the pool by preventing a rollback from being called when no transaction
is in progress.

	improve error message when the use of bind variables is attempted with
DLL statements, which is not supported by Oracle.

	if an Oracle object is retrieved from an attribute of another Oracle
object or a collection, prevent the “owner” from being destroyed until
the object that was retrieved has itself been destroyed.

	correct handling of boundary numbers 1e126 and -1e126

	eliminate memory leak when calling Connection.enq() and
Connection.deq()

	eliminate memory leak when setting NCHAR and NVARCHAR attributes of
objects.

	eliminate memory leak when fetching collection objects from the database.

	Added support for creating a temporary CLOB, BLOB or NCLOB via the method
Connection.createlob().

	Added support for binding a LOB value directly to a cursor.

	Added support for closing the connection when reaching the end of a
with code block controlled by the connection as a context manager, but
in a backwards compatible way
(issue 113 [https://github.com/oracle/python-cx_Oracle/issues/113]).
See cx_Oracle.__future__ for more information.

	Reorganized code to simplify continued maintenance and consolidate
transformations to/from Python objects.

	Ensure that the number of elements in the array is not lost when the
buffer size is increased to accommodate larger strings.

	Corrected support in Python 3.x for cursor.parse() by permitting a string
to be passed, instead of incorrectly requiring a bytes object.

	Eliminate reference leak with LOBs acquired from attributes of objects or
elements of collections.

	Eliminate reference leak when extending an Oracle collection.

	Documentation improvements.

	Added test cases to the test suite.

Version 6.1 (December 2017)

	Update to ODPI-C 2.1 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-1-december-12-2017].

	Support was added for accessing sharded databases via sharding keys (new
in Oracle 12.2). NOTE: the underlying OCI library has a bug when using
standalone connections. There is a small memory leak proportional to the
number of connections created/dropped. There is no memory leak when using
session pools, which is recommended.

	Added options for authentication with SYSBACKUP, SYSDG, SYSKM and SYSRAC,
as requested (issue 101 [https://github.com/oracle/python-cx_Oracle/issues/101]).

	Attempts to release statements or free LOBs after the connection has been
closed (by, for example, killing the session) are now prevented.

	An error message was added when specifying an edition and a connection
class since this combination is not supported.

	Attempts to close the session for connections created with an external
handle are now prevented.

	Attempting to ping a database earlier than 10g results in ORA-1010:
invalid OCI operation, but that implies a response from the database and
therefore a successful ping, so treat it that way!
(see https://github.com/rana/ora/issues/224 for more information).

	Support was added for converting numeric values in an object type
attribute to integer and text, as requested (ODPI-C issue 35 [https://github.com/oracle/odpi/issues/35]).

	Setting attributes DeqOptions.msgId and
MessageProperties.msgId now works as expected.

	The overflow check when using double values (Python floats) as input
to float attributes of objects or elements of collections was removed as
it didn’t work anyway and is a well-known issue that cannot be prevented
without removing desired functionality. The developer should ensure that
the source value falls within the limits of floats, understand the
consequent precision loss or use a different data type.

	Variables of string/raw types are restricted to 2 bytes less than 1 GB
(1,073,741,822 bytes), since OCI cannot handle more than that currently.

	Support was added for identifying the id of the transaction which spawned
a CQN subscription message, as requested
(ODPI-C issue 32 [https://github.com/oracle/odpi/issues/32]).

	Corrected use of subscription port number (issue 115 [https://github.com/oracle/python-cx_Oracle/issues/115]).

	Problems reported with the usage of FormatMessage() on Windows were
addressed (ODPI-C issue 47 [https://github.com/oracle/odpi/issues/47]).

	On Windows, if oci.dll cannot be loaded because it is the wrong
architecture (32-bit vs 64-bit), attempt to find the offending DLL and
include the full path of the DLL in the message, as suggested.
(ODPI-C issue 49 [https://github.com/oracle/odpi/issues/49]).

	Force OCI prefetch to always use the value 2; the OCI default is 1 but
setting the ODPI-C default to 2 ensures that single row fetches don’t
require an extra round trip to determine if there are more rows to fetch;
this change also reduces the potential memory consumption when
fetchArraySize was set to a large value and also avoids performance
issues discovered with larger values of prefetch.

	Fix build with PyPy 5.9.0-alpha0 in libpython mode
(PR 54 [https://github.com/oracle/python-cx_Oracle/pull/54]).

	Ensure that the edition is passed through to the database when a session
pool is created.

	Corrected handling of Python object references when an invalid keyword
parameter is passed to cx_Oracle.SessionPool().

	Corrected handling of Connection.handle and the handle parameter
to cx_Oracle.connect() on Windows.

	Documentation improvements.

	Added test cases to the test suite.

Version 6.0.3 (November 2017)

	Update to ODPI-C 2.0.3 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-3-november-6-2017].

	Prevent use of uninitialized data in certain cases (issue 77 [https://github.com/oracle/python-cx_Oracle/issues/77]).

	Attempting to ping a database earlier than 10g results in error
“ORA-1010: invalid OCI operation”, but that implies a response from the
database and therefore a successful ping, so treat it that way!

	Correct handling of conversion of some numbers to NATIVE_FLOAT.

	Prevent use of NaN with Oracle numbers since it produces corrupt data
(issue 91 [https://github.com/oracle/python-cx_Oracle/issues/91]).

	Verify that Oracle objects bound to cursors, fetched from cursors, set in
object attributes or appended to collection objects are of the correct
type.

	Correct handling of NVARCHAR2 when used as attributes of Oracle objects
or as elements of collections.

	Ensure that a call to setinputsizes() with an invalid type prior to a call
to executemany() does not result in a type error, but instead gracefully
ignores the call to setinputsizes() as required by the DB API
(issue 75 [https://github.com/oracle/python-cx_Oracle/issues/75]).

	Check variable array size when setting variable values and raise
IndexError, as is already done for getting variable values.

Version 6.0.2 (August 2017)

	Update to ODPI-C 2.0.2 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-2-august-30-2017].

	Don’t prevent connection from being explicitly closed when a fatal error
has taken place (issue 67 [https://github.com/oracle/python-cx_Oracle/issues/67]).

	Correct handling of objects when dynamic binding is performed.

	Process deregistration events without an error.

	Eliminate memory leak when creating objects.

	Added missing type check to prevent coercion of decimal to float
(issue 68 [https://github.com/oracle/python-cx_Oracle/issues/68]).

	On Windows, sizeof(long) = 4, not 8, which meant that integers between 10
and 18 digits were not converted to Python correctly
(issue 70 [https://github.com/oracle/python-cx_Oracle/issues/70]).

	Eliminate memory leak when repeatedly executing the same query.

	Eliminate segfault when attempting to reuse a REF cursor that has been
closed.

	Updated documentation.

Version 6.0.1 (August 2017)

	Update to ODPI-C 2.0.1 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-1-august-18-2017].

	Ensure that queries registered via Subscription.registerquery()
do not prevent the associated connection from being closed
(ODPI-C issue 27 [https://github.com/oracle/odpi/issues/27]).

	Deprecated attribute Subscription.id as it was never intended to
be exposed (ODPI-C issue 28 [https://github.com/oracle/odpi/issues/28]). It will be dropped in
version 6.1.

	Add support for DML Returning statements that require dynamically
allocated variable data (such as CLOBs being returned as strings).

	Correct packaging of Python 2.7 UCS4 wheels on Linux
(issue 64 [https://github.com/oracle/python-cx_Oracle/issues/64]).

	Updated documentation.

Version 6.0 (August 2017)

	Update to ODPI-C 2.0 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-august-14-2017].

	Prevent closing the connection when there are any open statements or
LOBs and add new error “DPI-1054: connection cannot be closed when open
statements or LOBs exist” when this situation is detected; this is
needed to prevent crashes under certain conditions when statements or
LOBs are being acted upon while at the same time (in another thread) a
connection is being closed; it also prevents leaks of statements and
LOBs when a connection is returned to a session pool.

	On platforms other than Windows, if the regular method for loading the
Oracle Client libraries fails, try using $ORACLE_HOME/lib/libclntsh.so
(ODPI-C issue 20 [https://github.com/oracle/odpi/issues/20]).

	Use the environment variable DPI_DEBUG_LEVEL at runtime, not compile
time.

	Added support for DPI_DEBUG_LEVEL_ERRORS (reports errors and has the
value 8) and DPI_DEBUG_LEVEL_SQL (reports prepared SQL statement text
and has the value 16) in order to further improve the ability to debug
issues.

	Correct processing of Cursor.scroll() in some circumstances.

	Delay initialization of the ODPI-C library until the first standalone
connection or session pool is created so that manipulation of the
environment variable NLS_LANG can be performed after the module has been
imported; this also has the added benefit of reducing the number of errors
that can take place when the module is imported.

	Prevent binding of null values from generating the exception “ORA-24816:
Expanded non LONG bind data supplied after actual LONG or LOB column” in
certain circumstances
(issue 50 [https://github.com/oracle/python-cx_Oracle/issues/50]).

	Added information on how to run the test suite
(issue 33 [https://github.com/oracle/python-cx_Oracle/issues/33]).

	Documentation improvements.

Version 6.0 rc 2 (July 2017)

	Update to ODPI-C rc 2 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-0-rc-2-july-20-2017].

	Provide improved error message when OCI environment cannot be created,
such as when the oraaccess.xml file cannot be processed properly.

	On Windows, convert system message to Unicode first, then to UTF-8;
otherwise, the error message returned could be in a mix of encodings
(issue 40 [https://github.com/oracle/python-cx_Oracle/issues/40]).

	Corrected support for binding decimal values in object attribute values
and collection element values.

	Corrected support for binding PL/SQL boolean values to PL/SQL
procedures with Oracle client 11.2.

	Define exception classes on the connection object in addition to at module
scope in order to simplify error handling in multi-connection environments,
as specified in the Python DB API.

	Ensure the correct encoding is used for setting variable values.

	Corrected handling of CLOB/NCLOB when using different encodings.

	Corrected handling of TIMESTAMP WITH TIME ZONE attributes on objects.

	Ensure that the array position passed to var.getvalue() does not exceed the
number of elements allocated in the array.

	Reworked test suite and samples so that they are independent of each other
and so that the SQL scripts used to create/drop schemas are easily adjusted
to use different schema names, if desired.

	Updated DB API test suite stub to support Python 3.

	Added additional test cases and samples.

	Documentation improvements.

Version 6.0 rc 1 (June 2017)

	Update to ODPI-C rc 1 [https://oracle.github.io/odpi/doc/releasenotes.html#version-2-0-0-rc-1-june-16-2017].

	The method Cursor.setoutputsize() no longer needs to do anything,
since ODPI-C automatically manages buffer sizes of LONG and LONG RAW
columns.

	Handle case when both precision and scale are zero, as occurs when
retrieving numeric expressions (issue 34 [https://github.com/oracle/python-cx_Oracle/issues/34]).

	OCI requires that both encoding and nencoding have values or that both
encoding and encoding do not have values. These parameters are used in
functions cx_Oracle.connect() and cx_Oracle.SessionPool(). The
missing value is set to its default value if one of the values is set and
the other is not (issue 36 [https://github.com/oracle/python-cx_Oracle/issues/36]).

	Permit use of both string and unicode for Python 2.7 for creating session
pools and for changing passwords (issue 23 [https://github.com/oracle/python-cx_Oracle/issues/23]).

	Corrected handling of BFILE LOBs.

	Add script for dropping test schemas.

	Documentation improvements.

Version 6.0 beta 2 (May 2017)

	Added support for getting/setting attributes of objects or element values
in collections that contain LOBs, BINARY_FLOAT values, BINARY_DOUBLE values
and NCHAR and NVARCHAR2 values. The error message for any types that are
not supported has been improved as well.

	Enable temporary LOB caching in order to avoid disk I/O as
suggested [https://github.com/oracle/odpi/issues/10].

	Added support for setting the debug level in ODPI-C, if desirable, by
setting environment variable DPI_DEBUG_LEVEL prior to building cx_Oracle.

	Correct processing of strings in Cursor.executemany() when a
larger string is found after a shorter string in the list of data bound to
the statement.

	Correct handling of long Python integers that cannot fit inside a 64-bit C
integer (issue 18 [https://github.com/oracle/python-cx_Oracle/issues/18]).

	Correct creation of pool using external authentication.

	Handle edge case when an odd number of zeroes trail the decimal point in a
value that is effectively zero (issue 22 [https://github.com/oracle/python-cx_Oracle/issues/22]).

	Prevent segfault under load when the attempt to create an error fails.

	Eliminate resource leak when a standalone connection or pool is freed.

	Correct typo [https://github.com/oracle/python-cx_Oracle/issues/24].

	Correct handling of REF cursors when the array size is manipulated.

	Prevent attempts from binding the cursor being executed to itself.

	Correct reference count handling of parameters when creating a cursor.

	Correct determination of the names of the bind variables in prepared SQL
statements (which behaves a little differently from PL/SQL statements).

Version 6.0 beta 1 (April 2017)

	Simplify building cx_Oracle considerably by use of
ODPI-C [https://oracle.github.io/odpi]. This means that cx_Oracle can
now be built without Oracle Client header files or libraries and that at
runtime cx_Oracle can adapt to Oracle Client 11.2, 12.1 or 12.2 libraries
without needing to be rebuilt. This also means that wheels can now be
produced and installed via pip.

	Added attribute SessionPool.stmtcachesize to support getting and
setting the default statement cache size for connections in the pool.

	Added attribute Connection.dbop to support setting the database
operation that is to be monitored.

	Added attribute Connection.handle to facilitate testing the
creation of a connection using a OCI service context handle.

	Added parameters tag and matchanytag to the cx_Oracle.connect()
and SessionPool.acquire() methods and added parameters tag and retag
to the SessionPool.release() method in order to support session
tagging.

	Added parameter edition to the cx_Oracle.SessionPool() method.

	Added support for
universal rowids [https://github.com/oracle/python-cx_Oracle/blob/master/samples/UniversalRowids.py].

	Added support for DML Returning of multiple rows [https://github.com/oracle/python-cx_Oracle/blob/master/samples/DMLReturningMultipleRows.py].

	Added attributes Variable.actualElements and
Variable.values to variables.

	Added parameters region, sharding_key and super_sharding_key to the
cx_Oracle.makedsn() method to support connecting to a sharded
database (new in Oracle Database 12.2).

	Added support for smallint and float data types in Oracle objects, as
requested [https://github.com/oracle/python-cx_Oracle/issues/4].

	An exception is no longer raised when a collection is empty for methods
Object.first() and Object.last(). Instead, the value None
is returned to be consistent with the methods Object.next() and
Object.prev().

	If the environment variables NLS_LANG and NLS_NCHAR are being used, they
must be set before the module is imported. Using the encoding and nencoding
parameters to the cx_Oracle.connect() and
cx_Oracle.SessionPool() methods is a simpler alternative to setting
these environment variables.

	Removed restriction on fetching LOBs across round trips to the database
(eliminates error “LOB variable no longer valid after subsequent fetch”).

	Removed requirement for specifying a maximum size when fetching LONG or
LONG raw columns. This also allows CLOB, NCLOB, BLOB and BFILE columns to
be fetched as strings or bytes without needing to specify a maximum size.

	Dropped deprecated parameter twophase from the cx_Oracle.connect()
method. Applications should set the Connection.internal_name and
Connection.external_name attributes instead to a value appropriate
to the application.

	Dropped deprecated parameters action, module and clientinfo from the
cx_Oracle.connect() method. The appcontext parameter should be used
instead as shown in this sample [https://github.com/oracle/python-cx_Oracle/blob/master/samples/AppContext.py].

	Dropped deprecated attribute numbersAsString from
cursor objects. Use an output type handler instead as
shown in this sample [https://github.com/oracle/python-cx_Oracle/blob/master/samples/ReturnNumbersAsDecimals.py].

	Dropped deprecated attributes cqqos and rowids from
subscription objects. Use the qos attribute instead as
shown in this sample [https://github.com/oracle/python-cx_Oracle/blob/master/samples/CQN.py].

	Dropped deprecated parameters cqqos and rowids from the
Connection.subscribe() method. Use the qos parameter instead as
shown in this sample [https://github.com/oracle/python-cx_Oracle/blob/master/samples/CQN.py].

Version 5.3 (March 2017)

	Added support for Python 3.6.

	Dropped support for Python versions earlier than 2.6.

	Dropped support for Oracle clients earlier than 11.2.

	Added support for
fetching implicit results
(available in Oracle 12.1)

	Added support for Transaction Guard (available
in Oracle 12.1).

	Added support for setting the
maximum lifetime of pool
connections (available in Oracle 12.1).

	Added support for large row counts (larger than 2 ** 32, available in
Oracle 12.1)

	Added support for advanced queuing.

	Added support for scrollable cursors.

	Added support for edition based redefinition.

	Added support for creating, modifying and
binding user defined types and collections.

	Added support for creating, modifying and binding PL/SQL records and
collections (available in Oracle 12.1).

	Added support for binding native integers.

	Enabled statement caching.

	Removed deprecated variable attributes maxlength and allocelems.

	Corrected support for setting the encoding and nencoding parameters when
creating a connection and added support for
setting these when creating a session pool. These can now be used instead
of setting the environment variables NLS_LANG and NLS_NCHAR.

	Use None instead of 0 for items in the Cursor.description attribute
that do not have any validity.

	Changed driver name to match informal driver name standard used by Oracle
for other drivers.

	Add check for maximum of 10,000 parameters when calling a stored procedure
or function in order to prevent a possible improper memory access from
taking place.

	Removed -mno-cygwin compile flag since it is no longer used in newer
versions of the gcc compiler for Cygwin.

	Simplified test suite by combining Python 2 and 3 scripts into one script
and separated out 12.1 features into a single script.

	Updated samples to use code that works on both Python 2 and 3

	Added support for pickling/unpickling error objects
(Issue #23 [https://bitbucket.org/anthony_tuininga/cx_oracle/issues/23])

	Dropped support for callbacks on OCI functions.

	Removed deprecated types UNICODE, FIXED_UNICODE and LONG_UNICODE (use
NCHAR, FIXED_NCHAR and LONG_NCHAR instead).

	Increased default array size to 100 (from 50) to match other drivers.

	Added support for setting the internal_name and
external_name on the connection directly. The use of
the twophase parameter is now deprecated. Applications should set the
internal_name and external_name attributes directly to a value appropriate
to the application.

	Added support for using application context when
creating a connection. This should be used
in preference to the module, action and clientinfo parameters which are now
deprecated.

	Reworked database change notification and continuous query notification to
more closely align with the PL/SQL implementation and prepare for sending
notifications for AQ messages. The following changes were made:

	added constant SUBSCR_QOS_BEST_EFFORT to replace
deprecated constant SUBSCR_CQ_QOS_BEST_EFFORT

	added constant SUBSCR_QOS_QUERY to replace
deprecated constant SUBSCR_CQ_QOS_QUERY

	added constant SUBSCR_QOS_DEREG_NFY to replace
deprecated constant SUBSCR_QOS_PURGE_ON_NTFN

	added constant SUBSCR_QOS_ROWIDS to replace parameter
rowids for method Connection.subscribe()

	deprecated parameter cqqos for method Connection.subscribe(). The
qos parameter should be used instead.

	dropped constants SUBSCR_CQ_QOS_CLQRYCACHE, SUBSCR_QOS_HAREG,
SUBSCR_QOS_MULTICBK, SUBSCR_QOS_PAYLOAD, SUBSCR_QOS_REPLICATE, and
SUBSCR_QOS_SECURE since they were never actually used

	Deprecated use of the numbersAsStrings attribute on cursors. An output type
handler should be used instead.

Version 5.2.1 (January 2016)

	Added support for Python 3.5.

	Removed password attribute from connection and session pool objects in
order to promote best security practices (if stored in RAM in cleartext it
can be read in process dumps, for example). For those who would like to
retain this feature, a subclass of Connection could be used to store the
password.

	Added optional parameter externalauth to SessionPool() which enables wallet
based or other external authentication mechanisms to be used.

	Use the national character set encoding when required (when char set form
is SQLCS_NCHAR); otherwise, the wrong encoding would be used if the
environment variable NLS_NCHAR is set.

	Added support for binding boolean values to PL/SQL blocks and stored
procedures (available in Oracle 12.1).

Version 5.2 (June 2015)

	Added support for strings up to 32k characters (new in Oracle 12c).

	Added support for getting array DML row counts (new in Oracle 12c).

	Added support for fetching batch errors.

	Added support for LOB values larger than 4 GB.

	Added support for connections as SYSASM.

	Added support for building without any configuration changes to the machine
when using instant client RPMs on Linux.

	Added types NCHAR, FIXED_NCHAR and LONG_NCHAR to replace the types UNICODE,
FIXED_UNICODE and LONG_UNICODE (which are now deprecated). These types are
available in Python 3 as well so they can be used to specify the use of
NCHAR type fields when binding or using setinputsizes().

	Fixed binding of booleans in Python 3.x.

	Test suite now sets NLS_LANG if not already set.

	Enhanced documentation for connection.action attribute and added note
on cursor.parse() method to make clear that DDL statements are executed
when parsed.

	Removed remaining remnants of support Oracle 9i.

	Added __version__ attribute to conform with PEP 396.

	Ensure that sessions are released to the pool when calling
connection.close()
(Issue #2 [https://bitbucket.org/anthony_tuininga/cx_oracle/issue/2])

	Fixed handling of datetime intervals
(Issue #7 [https://bitbucket.org/anthony_tuininga/cx_oracle/issue/7])

Version 5.1.3 (May 2014)

	Added support for Oracle 12c.

	Added support for Python 3.4.

	Added support for query result set change notification. Thanks to Glen
Walker for the patch.

	Ensure that in Python 3.x that NCHAR and NVARCHAR2 and NCLOB columns are
retrieved properly without conversion issues. Thanks to Joakim Andersson
for pointing out the issue and the possible solution.

	Fix bug when an exception is caught and then another exception is raised
while handling that exception in Python 3.x. Thanks to Boris Dzuba for
pointing out the issue and providing a test case.

	Enhance performance returning integers between 10 and 18 digits on 64-bit
platforms that support it. Thanks for Shai Berger for the initial patch.

	Fixed two memory leaks.

	Fix to stop current_schema from throwing a MemoryError on 64-bit platforms
on occasion. Thanks to Andrew Horton for the fix.

	Class name of cursors changed to real name cx_Oracle.Cursor.

Version 5.1.2 (July 2012)

	Added support for LONG_UNICODE which is a type used to handle long unicode
strings. These are not explicitly supported in Oracle but can be used to
bind to NCLOB, for example, without getting the error “unimplemented or
unreasonable conversion requested”.

	Set the row number in a cursor when executing PL/SQL blocks as requested
by Robert Ritchie.

	Added support for setting the module, action and client_info attributes
during connection so that logon triggers will see the supplied values, as
requested by Rodney Barnett.

Version 5.1.1 (October 2011)

	Simplify management of threads for callbacks performed by database change
notification and eliminate a crash that occurred under high load in
certain situations. Thanks to Calvin S. for noting the issue and suggesting
a solution and testing the patch.

	Force server detach on close so that the connection is completely closed
and not just the session as before.

	Force use of OCI_UTF16ID for NCLOBs as using the default character set
would result in ORA-03127 with Oracle 11.2.0.2 and UTF8 character set.

	Avoid attempting to clear temporary LOBs a second time when destroying the
variable as in certain situations this results in spurious errors.

	Added additional parameter service_name to makedsn() which can be used to
use the service_name rather than the SID in the DSN string that is
generated.

	Fix cursor description in test suite to take into account the number of
bytes per character.

	Added tests for NCLOBS to the test suite.

	Removed redundant code in setup.py for calculating the library path.

Version 5.1 (March 2011)

	Remove support for UNICODE mode and permit Unicode to be passed through in
everywhere a string may be passed in. This means that strings will be
passed through to Oracle using the value of the NLS_LANG environment
variable in Python 3.x as well. Doing this eliminated a bunch of problems
that were discovered by using UNICODE mode and also removed an unnecessary
restriction in Python 2.x that Unicode could not be used in connect strings
or SQL statements, for example.

	Added support for creating an empty object variable via a named type, the
first step to adding full object support.

	Added support for Python 3.2.

	Account for lib64 used on x86_64 systems. Thanks to Alex Wood for supplying
the patch.

	Clear up potential problems when calling cursor.close() ahead of the
cursor being freed by going out of scope.

	Avoid compilation difficulties on AIX5 as OCIPing does not appear to be
available on that platform under Oracle 10g Release 2. Thanks to
Pierre-Yves Fontaniere for the patch.

	Free temporary LOBs prior to each fetch in order to avoid leaking them.
Thanks to Uwe Hoffmann for the initial patch.

Version 5.0.4 (July 2010)

	Added support for Python 2.7.

	Added support for new parameter (port) for subscription() call which allows
the client to specify the listening port for callback notifications from
the database server. Thanks to Geoffrey Weber for the initial patch.

	Fixed compilation under Oracle 9i.

	Fixed a few error messages.

Version 5.0.3 (February 2010)

	Added support for 64-bit Windows.

	Added support for Python 3.1 and dropped support for Python 3.0.

	Added support for keyword parameters in cursor.callproc() and
cursor.callfunc().

	Added documentation for the UNICODE and FIXED_UNICODE variable types.

	Added extra link arguments required for Mac OS X as suggested by Jason
Woodward.

	Added additional error codes to the list of error codes that raise
OperationalError rather than DatabaseError.

	Fixed calculation of display size for strings with national database
character sets that are not the default AL16UTF16.

	Moved the resetting of the setinputsizes flag before the binding takes
place so that if an error takes place and a new statement is prepared
subsequently, spurious errors will not occur.

	Fixed compilation with Oracle 10g Release 1.

	Tweaked documentation based on feedback from a number of people.

	Added support for running the test suite using “python setup.py test”

	Added support for setting the CLIENT_IDENTIFIER value in the v$session
table for connections.

	Added exception when attempting to call executemany() with arrays which is
not supported by the OCI.

	Fixed bug when converting from decimal would result in OCI-22062 because
the locale decimal point was not a period. Thanks to Amaury Forgeot d’Arc
for the solution to this problem.

Version 5.0.2 (May 2009)

	Fix creation of temporary NCLOB values and the writing of NCLOB values in
non Unicode mode.

	Re-enabled parsing of non select statements as requested by Roy Terrill.

	Implemented a parse error offset as requested by Catherine Devlin.

	Removed lib subdirectory when forcing RPATH now that the library directory
is being calculated exactly in setup.py.

	Added an additional cast in order to support compiling by Microsoft
Visual C++ 2008 as requested by Marco de Paoli.

	Added additional include directory to setup.py in order to support
compiling by Microsoft Visual Studio was requested by Jason Coombs.

	Fixed a few documentation issues.

Version 5.0.1 (February 2009)

	Added support for database change notification available in Oracle 10g
Release 2 and higher.

	Fix bug where NCLOB data would be corrupted upon retrieval (non Unicode
mode) or would generate exception ORA-24806 (LOB form mismatch). Oracle
insists upon differentiating between CLOB and NCLOB no matter which
character set is being used for retrieval.

	Add new attributes size, bufferSize and numElements to variable objects,
deprecating allocelems (replaced by numElements) and maxlength (replaced
by bufferSize)

	Avoid increasing memory allocation for strings when using variable width
character sets and increasing the number of elements in a variable during
executemany().

	Tweaked code in order to ensure that cx_Oracle can compile with Python
3.0.1.

Version 5.0 (December 2008)

	Added support for Python 3.0 with much help from Amaury Forgeot d’Arc.

	Removed support for Python 2.3 and Oracle 8i.

	Added support for full unicode mode in Python 2.x where all strings are
passed in and returned as unicode (module must be built in this mode)
rather than encoded strings

	nchar and nvarchar columns now return unicode instead of encoded strings

	Added support for an output type handler and/or an input type handler to be
specified at the connection and cursor levels.

	Added support for specifying both input and output converters for variables

	Added support for specifying the array size of variables that are created
using the cursor.var() method

	Added support for events mode and database resident connection pooling
(DRCP) in Oracle 11g.

	Added support for changing the password during construction of a new
connection object as well as after the connection object has been created

	Added support for the interval day to second data type in Oracle,
represented as datetime.timedelta objects in Python.

	Added support for getting and setting the current_schema attribute for a
session

	Added support for proxy authentication in session pools as requested by
Michael Wegrzynek (and thanks for the initial patch as well).

	Modified connection.prepare() to return a boolean indicating if a
transaction was actually prepared in order to avoid the error ORA-24756
(transaction does not exist).

	Raise a cx_Oracle.Error instance rather than a string for column
truncation errors as requested by Helge Tesdal.

	Fixed handling of environment handles in session pools in order to allow
session pools to fetch objects without exceptions taking place.

Version 4.4.1 (October 2008)

	Make the bind variables and fetch variables accessible although they need
to be treated carefully since they are used internally; support added for
forward compatibility with version 5.x.

	Include the “cannot insert null value” in the list of errors that are
treated as integrity errors as requested by Matt Boersma.

	Use a cx_Oracle.Error instance rather than a string to hold the error when
truncation (ORA-1406) takes place as requested by Helge Tesdal.

	Added support for fixed char, old style varchar and timestamp attribute
values in objects.

	Tweaked setup.py to check for the Oracle version up front rather than
during the build in order to produce more meaningful errors and simplify
the code.

	In setup.py added proper detection for the instant client on Mac OS X as
recommended by Martijn Pieters.

	In setup.py, avoided resetting the extraLinkArgs on Mac OS X as doing so
prevents simple modification where desired as expressed by Christian
Zagrodnick.

	Added documentation on exception handling as requested by Andreas Mock, who
also graciously provided an initial patch.

	Modified documentation indicating that the password attribute on connection
objects can be written.

	Added documentation warning that parameters not passed in during subsequent
executions of a statement will retain their original values as requested by
Harald Armin Massa.

	Added comments indicating that an Oracle client is required since so many
people find this surprising.

	Removed all references to Oracle 8i from the documentation and version 5.x
will eliminate all vestiges of support for this version of the Oracle
client.

	Added additional link arguments for Cygwin as requested by Rob Gillen.

Version 4.4 (June 2008)

	Fix setup.py to handle the Oracle instant client and Oracle XE on both
Linux and Windows as pointed out by many. Thanks also to the many people
who also provided patches.

	Set the default array size to 50 instead of 1 as the DB API suggests
because the performance difference is so drastic and many people have
recommended that the default be changed.

	Added Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS around each blocking
call for LOBs as requested by Jason Conroy who also provided an initial
patch and performed a number of tests that demonstrate the new code is much
more responsive.

	Add support for acquiring cursor.description after a parse.

	Defer type assignment when performing executemany() until the last possible
moment if the value being bound in is null as suggested by Dragos Dociu.

	When dropping a connection from the pool, ignore any errors that occur
during the rollback; unfortunately, Oracle decides to commit data even when
dropping a connection from the pool instead of rolling it back so the
attempt still has to be made.

	Added support for setting CLIENT_DRIVER in V$SESSION_CONNECT_INFO in Oracle
11g and higher.

	Use cx_Oracle.InterfaceError rather than the builtin RuntimeError when
unable to create the Oracle environment object as requested by Luke Mewburn
since the error is specific to Oracle and someone attempting to catch any
exception cannot simply use cx_Oracle.Error.

	Translated some error codes to OperationalError as requested by Matthew
Harriger; translated if/elseif/else logic to switch statement to make it
more readable and to allow for additional translation if desired.

	Transformed documentation to new format using restructured text. Thanks to
Waldemar Osuch for contributing the initial draft of the new documentation.

	Allow the password to be overwritten by a new value as requested by Alex
VanderWoude; this value is retained as a convenience to the user and not
used by anything in the module; if changed externally it may be convenient
to keep this copy up to date.

	Cygwin is on Windows so should be treated in the same way as noted by
Matthew Cahn.

	Add support for using setuptools if so desired as requested by Shreya
Bhatt.

	Specify that the version of Oracle 10 that is now primarily used is 10.2,
not 10.1.

Version 4.3.3 (October 2007)

	Added method ping() on connections which can be used to test whether or not
a connection is still active (available in Oracle 10g R2).

	Added method cx_Oracle.clientversion() which returns a 5-tuple giving the
version of the client that is in use (available in Oracle 10g R2).

	Added methods startup() and shutdown() on connections which can be used to
startup and shutdown databases (available in Oracle 10g R2).

	Added support for Oracle 11g.

	Added samples directory which contains a handful of scripts containing
sample code for more advanced techniques. More will follow in future
releases.

	Prevent error “ORA-24333: zero iteration count” when calling executemany()
with zero rows as requested by Andreas Mock.

	Added methods __enter__() and __exit__() on connections to support using
connections as context managers in Python 2.5 and higher. The context
managed is the transaction state. Upon exit the transaction is either
rolled back or committed depending on whether an exception took place or
not.

	Make the search for the lib32 and lib64 directories automatic for all
platforms.

	Tweak the setup configuration script to include all of the metadata and
allow for building the module within another setup configuration script

	Include the Oracle version in addition to the Python version in the build
directories that are created and in the names of the binary packages that
are created.

	Remove unnecessary dependency on win32api to build module on Windows.

Version 4.3.2 (August 2007)

	Added methods open(), close(), isopen() and getchunksize() in order to
improve performance of reading/writing LOB values in chunks.

	Fixed support for native doubles and floats in Oracle 10g; added new type
NATIVE_FLOAT to allow specification of a variable of that specific type
where desired. Thanks to D.R. Boxhoorn for pointing out the fact that this
was not working properly when the arraysize was anything other than 1.

	When calling connection.begin(), only create a new transaction handle if
one is not already associated with the connection. Thanks to Andreas Mock
for discovering this and for Amaury Forgeot d’Arc for diagnosing the
problem and pointing the way to a solution.

	Added attribute cursor.rowfactory which allows a method to be called for
each row that is returned; this is about 20% faster than calling the method
in Python using the idiom [method(*r) for r in cursor].

	Attempt to locate an Oracle installation by looking at the PATH if the
environment variable ORACLE_HOME is not set; this is of primary use on
Windows where this variable should not normally be set.

	Added support for autocommit mode as requested by Ian Kelly.

	Added support for connection.stmtcachesize which allows for both reading
and writing the size of the statement cache size. This parameter can make a
huge difference with the length of time taken to prepare statements. Added
support for setting the statement tag when preparing a statement. Both of
these were requested by Bjorn Sandberg who also provided an initial patch.

	When copying the value of a variable, copy the return code as well.

Version 4.3.1 (April 2007)

	Ensure that if the client buffer size exceeds 4000 bytes that the server
buffer size does not as strings may only contain 4000 bytes; this allows
handling of multibyte character sets on the server as well as the client.

	Added support for using buffer objects to populate binary data and made the
Binary() constructor the buffer type as requested by Ken Mason.

	Fix potential crash when using full optimization with some compilers.
Thanks to Aris Motas for noticing this and providing the initial patch and
to Amaury Forgeot d’Arc for providing an even simpler solution.

	Pass the correct charset form in to the write call in order to support
writing to national character set LOB values properly. Thanks to Ian Kelly
for noticing this discrepancy.

Version 4.3 (March 2007)

	Added preliminary support for fetching Oracle objects (SQL types) as
requested by Kristof Beyls (who kindly provided an initial patch).
Additional work needs to be done to support binding and updating objects
but the basic structure is now in place.

	Added connection.maxBytesPerCharacter which indicates the maximum number of
bytes each character can use; use this value to also determine the size of
local buffers in order to handle discrepancies between the client character
set and the server character set. Thanks to Andreas Mock for providing the
initial patch and working with me to resolve this issue.

	Added support for querying native floats in Oracle 10g as requested by
Danny Boxhoorn.

	Add support for temporary LOB variables created via PL/SQL instead of only
directly by cx_Oracle; thanks to Henning von Bargen for discovering this
problem.

	Added support for specifying variable types using the builtin types int,
float, str and datetime.date which allows for finer control of what type of
Python object is returned from cursor.callfunc() for example.

	Added support for passing booleans to callproc() and callfunc() as
requested by Anana Aiyer.

	Fixed support for 64-bit environments in Python 2.5.

	Thanks to Filip Ballegeer and a number of his co-workers, an intermittent
crash was tracked down; specifically, if a connection is closed, then the
call to OCIStmtRelease() will free memory twice. Preventing the call when
the connection is closed solves the problem.

Version 4.2.1 (September 2006)

	Added additional type (NCLOB) to handle CLOBs that use the national
character set as requested by Chris Dunscombe.

	Added support for returning cursors from functions as requested by Daniel
Steinmann.

	Added support for getting/setting the “get” mode on session pools as
requested by Anand Aiyer.

	Added support for binding subclassed cursors.

	Fixed binding of decimal objects with absolute values less than 0.1.

Version 4.2 (July 2006)

	Added support for parsing an Oracle statement as requested by Patrick
Blackwill.

	Added support for BFILEs at the request of Matthew Cahn.

	Added support for binding decimal.Decimal objects to cursors.

	Added support for reading from NCLOBs as requested by Chris Dunscombe.

	Added connection attributes encoding and nencoding which return the IANA
character set name for the character set and national character set in use
by the client.

	Rework module initialization to use the techniques recommended by the
Python documentation as one user was experiencing random segfaults due
to the use of the module dictionary after the initialization was complete.

	Removed support for the OPT_Threading attribute. Use the threaded keyword
when creating connections and session pools instead.

	Removed support for the OPT_NumbersAsStrings attribute. Use the
numbersAsStrings attribute on cursors instead.

	Use type long rather than type int in order to support long integers on
64-bit machines as reported by Uwe Hoffmann.

	Add cursor attribute “bindarraysize” which is defaulted to 1 and is used
to determine the size of the arrays created for bind variables.

	Added repr() methods to provide something a little more useful than the
standard type name and memory address.

	Added keyword parameter support to the functions that imply such in the
documentation as requested by Harald Armin Massa.

	Treat an empty dictionary passed through to cursor.execute() as keyword
parameters the same as if no keyword parameters were specified at all, as
requested by Fabien Grumelard.

	Fixed memory leak when a LOB read would fail.

	Set the LDFLAGS value in the environment rather than directly in the
setup.py file in order to satisfy those who wish to enable the use of
debugging symbols.

	Use __DATE__ and __TIME__ to determine the date and time of the build
rather than passing it through directly.

	Use Oracle types and add casts to reduce warnings as requested by Amaury
Forgeot d’Arc.

	Fixed typo in error message.

Version 4.1.2 (December 2005)

	Restore support of Oracle 9i features when using the Oracle 10g client.

Version 4.1.1 (December 2005)

	Add support for dropping a connection from a session pool.

	Add support for write only attributes “module”, “action” and “clientinfo”
which work only in Oracle 10g as requested by Egor Starostin.

	Add support for pickling database errors.

	Use the previously created bind variable as a template if available when
creating a new variable of a larger size. Thanks to Ted Skolnick for the
initial patch.

	Fixed tests to work properly in the Python 2.4 environment where dates and
timestamps are different Python types. Thanks to Henning von Bargen for
pointing this out.

	Added additional directories to search for include files and libraries in
order to better support the Oracle 10g instant client.

	Set the internal fetch number to 0 in order to satisfy very picky source
analysis tools as requested by Amaury Fogeot d’Arc.

	Improve the documentation for building and installing the module from
source as some people are unaware of the standard methods for building
Python modules using distutils.

	Added note in the documentation indicating that the arraysize attribute
can drastically affect performance of queries since this seems to be a
common misunderstanding of first time users of cx_Oracle.

	Add a comment indicating that on HP-UX Itanium with Oracle 10g the library
ttsh10 must also be linked against. Thanks to Bernard Delmee for the
information.

Version 4.1 (January 2005)

	Fixed bug where subclasses of Cursor do not pass the connection in the
constructor causing a segfault.

	DDL statements must be reparsed before execution as noted by Mihai
Ibanescu.

	Add support for setting input sizes by position.

	Fixed problem with catching an exception during execute and then still
attempting to perform a fetch afterwards as noted by Leith Parkin.

	Rename the types so that they can be pickled and unpickled. Thanks to Harri
Pasanen for pointing out the problem.

	Handle invalid NLS_LANG setting properly (Oracle seems to like to provide a
handle back even though it is invalid) and determine the number of bytes
per character in order to allow for proper support in the future of
multibyte and variable width character sets.

	Remove date checking from the native case since Python already checks that
dates are valid; enhance error message when invalid dates are encountered
so that additional processing can be done.

	Fix bug executing SQL using numeric parameter names with predefined
variables (such as what takes place when calling stored procedures with out
parameters).

	Add support for reading CLOB values using multibyte or variable length
character sets.

Version 4.1 beta 1 (September 2004)

	Added support for Python 2.4. In Python 2.4, the datetime module is used
for both binding and fetching of date and timestamp data. In Python 2.3,
objects from the datetime module can be bound but the internal datetime
objects will be returned from queries.

	Added pickling support for LOB and datetime data.

	Fully qualified the table name that was missing in an alter table
statement in the setup test script as noted by Marc Gehling.

	Added a section allowing for the setting of the RPATH linker directive in
setup.py as requested by Iustin Pop.

	Added code to raise a programming error exception when an attempt is made
to access a LOB locator variable in a subsequent fetch.

	The username, password and dsn (tnsentry) are stored on the connection
object when specified, regardless of whether or not a standard connection
takes place.

	Added additional module level constant called “LOB” as requested by Joseph
Canedo.

	Changed exception type to IntegrityError for constraint violations as
requested by Joseph Canedo.

	If scale and precision are not specified, an attempt is made to return a
long integer as requested by Joseph Canedo.

	Added workaround for Oracle bug which returns an invalid handle when the
prepare call fails. Thanks to alantam@hsbc.com for providing the code that
demonstrated the problem.

	The cursor method arrayvar() will now accept the actual list so that it is
not necessary to call cursor.arrayvar() followed immediately by
var.setvalue().

	Fixed bug where attempts to execute the statement “None” with bind
variables would cause a segmentation fault.

	Added support for binding by position (paramstyle = “numeric”).

	Removed memory leak created by calls to OCIParamGet() which were not
mirrored by calls to OCIDescriptorFree(). Thanks to Mihai Ibanescu for
pointing this out and providing a patch.

	Added support for calling cursor.executemany() with statement None
implying that the previously prepared statement ought to be executed.
Thanks to Mihai Ibanescu for providing a patch.

	Added support for rebinding variables when a subsequent call to
cursor.executemany() uses a different number of rows. Thanks to Mihai
Ibanescu for supplying a patch.

	The microseconds are now displayed in datetime variables when nonzero
similar to method used in the datetime module.

	Added support for binary_float and binary_double columns in Oracle 10g.

Version 4.0.1 (February 2004)

	Fixed bugs on 64-bit platforms that caused segmentation faults and bus
errors in session pooling and determining the bind variables associated
with a statement.

	Modified test suite so that 64-bit platforms are tested properly.

	Added missing commit statements in the test setup scripts. Thanks to Keith
Lyon for pointing this out.

	Fix setup.py for Cygwin environments. Thanks to Doug Henderson for
providing the necessary fix.

	Added support for compiling cx_Oracle without thread support. Thanks to
Andre Reitz for pointing this out.

	Added support for a new keyword parameter called threaded on connections
and session pools. This parameter defaults to False and indicates whether
threaded mode ought to be used. It replaces the module level attribute
OPT_Threading although examining the attribute will be retained until the
next release at least.

	Added support for a new keyword parameter called twophase on connections.
This parameter defaults to False and indicates whether support for two
phase (distributed or global) transactions ought to be present. Note that
support for distributed transactions is buggy when crossing major version
boundaries (Oracle 8i to Oracle 9i for example).

	Ensure that the rowcount attribute is set properly when an exception is
raised during execution. Thanks to Gary Aviv for pointing out this problem
and its solution.

Version 4.0 (December 2003)

	Added support for subclassing connections, cursors and session pools. The
changes involved made it necessary to drop support for Python 2.1 and
earlier although a branch exists in CVS to allow for support of Python 2.1
and earlier if needed.

	Connections and session pools can now be created with keyword parameters,
not just sequential parameters.

	Queries now return integers whenever possible and long integers if the
number will overflow a simple integer. Floats are only returned when it is
known that the number is a floating point number or the integer conversion
fails.

	Added initial support for user callbacks on OCI functions. See the
documentation for more details.

	Add support for retrieving the bind variable names associated with a
cursor with a new method bindnames().

	Add support for temporary LOB variables. This means that setinputsizes()
can be used with the values CLOB and BLOB to create these temporary LOB
variables and allow for the equivalent of empty_clob() and empty_blob()
since otherwise Oracle will treat empty strings as NULL values.

	Automatically switch to long strings when the data size exceeds the
maximum string size that Oracle allows (4000 characters) and raise an
error if an attempt is made to set a string variable to a size that it
does not support. This avoids truncation errors as reported by Jon Franz.

	Add support for global (distributed) transactions and two phase commit.

	Force the NLS settings for the session so that test tables are populated
correctly in all circumstances; problems were noted by Ralf Braun and
Allan Poulsen.

	Display error messages using the environment handle when the error handle
has not yet been created; this provides better error messages during this
rather rare situation.

	Removed memory leak in callproc() that was reported by Todd Whiteman.

	Make consistent the calls to manipulate memory; otherwise segfaults can
occur when the pymalloc option is used, as reported by Matt Hoskins.

	Force a rollback when a session is released back to the session pool.
Apparently the connections are not as stateless as Oracle’s documentation
suggests and this makes the logic consistent with normal connections.

	Removed module method attach(). This can be replaced with a call to
Connection(handle=) if needed.

Version 3.1 (August 2003)

	Added support for connecting with SYSDBA and SYSOPER access which is
needed for connecting as sys in Oracle 9i.

	Only check the dictionary size if the variable is not NULL; otherwise, an
error takes place which is not caught or cleared; this eliminates a
spurious “Objects/dictobject.c:1258: bad argument to internal function” in
Python 2.3.

	Add support for session pooling. This is only support for Oracle 9i but
is amazingly fast – about 100 times faster than connecting.

	Add support for statement caching when pooling sessions, this reduces the
parse time considerably. Unfortunately, the Oracle OCI does not allow this
to be easily turned on for normal sessions.

	Add method trim() on CLOB and BLOB variables for trimming the size.

	Add support for externally identified users; to use this feature leave the
username and password fields empty when connecting.

	Add method cancel() on connection objects to cancel long running queries.
Note that this only works on non-Windows platforms.

	Add method callfunc() on cursor objects to allow calling a function
without using an anonymous PL/SQL block.

	Added documentation on objects that were not documented. At this point all
objects, methods and constants in cx_Oracle have been documented.

	Added support for timestamp columns in Oracle 9i.

	Added module level method makedsn() which creates a data source name given
the host, port and SID.

	Added constant “buildtime” which is the time when the module was built as
an additional means of identifying the build that is in use.

	Binding a value that is incompatible to the previous value that was bound
(data types do not match or array size is larger) will now result in a
new bind taking place. This is more consistent with the DB API although
it does imply a performance penalty when used.

Version 3.0a (June 2003)

	Fixed bug where zero length PL/SQL arrays were being mishandled

	Fixed support for the data type “float” in Oracle; added one to the
display size to allow for the sign of the number, if necessary; changed
the display size of unconstrained numbers to 127, which is the largest
number that Oracle can handle

	Added support for retrieving the description of a bound cursor before
fetching it

	Fixed a couple of build issues on Mac OS X, AIX and Solaris (64-bit)

	Modified documentation slightly based on comments from several people

	Included files in MANIFEST that are needed to generate the binaries

	Modified test suite to work within the test environment at Computronix
as well as within the packages that are distributed

Version 3.0 (March 2003)

	Removed support for connection to Oracle7 databases; it is entirely
possible that it will still work but I no longer have any way of testing
and Oracle has dropped any meaningful support for Oracle7 anyway

	Fetching of strings is now done with predefined memory areas rather than
dynamic memory areas; dynamic fetching of strings was causing problems
with Oracle 9i in some instances and databases using a different character
set other than US ASCII

	Fixed bug where segfault would occur if the ‘/’ character preceded the ‘@’
character in a connect string

	Added two new cursor methods var() and arrayvar() in order to eliminate
the need for setinputsizes() when defining PL/SQL arrays and as a generic
method of acquiring bind variables directly when needed

	Fixed support for binding cursors and added support for fetching cursors
(these are known as ref cursors in PL/SQL).

	Eliminated discrepancy between the array size used internally and the
array size specified by the interface user; this was done earlier to avoid
bus errors on 64-bit platforms but another way has been found to get
around that issue and a number of people were getting confused because of
the discrepancy

	Added support for the attribute “connection” on cursors, an optional
DB API extension

	Added support for passing a dictionary as the second parameter for the
cursor.execute() method in order to comply with the DB API more closely;
the method of passing parameters with keyword parameters is still supported
and is in fact preferred

	Added support for the attribute “statement” on cursors which is a
reference to the last SQL statement prepared or executed

	Added support for passing any sequence to callproc() rather than just
lists as before

	Fixed bug where segfault would occur if the array size was changed after
the cursor was executed but before it was fetched

	Ignore array size when performing executemany() and use the length of the
list of parameters instead

	Rollback when connection is closed or destroyed to follow DB API rather
than use the Oracle default (which is commit)

	Added check for array size too large causing an integer overflow

	Added support for iterators for Python 2.2 and above

	Added test suite based on PyUnitTest

	Added documentation in HTML format similar to the documentation for the
core Python library

Version 2.5a (August 2002)

	Fix problem with Oracle 9i and retrieving strings; it seems that Oracle 9i
uses the correct method for dynamic callback but Oracle 8i will not work
with that method so an #ifdef was added to check for the existence of an
Oracle 9i feature; thanks to Paul Denize for discovering this problem

Version 2.5 (July 2002)

	Added flag OPT_NoOracle7 which, if set, assumes that connections are being
made to Oracle8 or higher databases; this allows for eliminating the
overhead in performing this check at connect time

	Added flag OPT_NumbersAsStrings which, if set, returns all numbers as
strings rather than integers or floats; this flag is used when defined
variables are created (during select statements only)

	Added flag OPT_Threading which, if set, uses OCI threading mode; there is a
significant performance degradation in this mode (about 15-20%) but it does
allow threads to share connections (threadsafety level 2 according to the
Python Database API 2.0); note that in order to support this, Oracle 8i or
higher is now required

	Added Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS pairs where
applicable to support threading during blocking OCI calls

	Added global method attach() to cx_Oracle to support attaching to an
existing database handle (as provided by PowerBuilder, for example)

	Eliminated the cursor method fetchbinds() which was used for returning the
list of bind variables after execution to get the values of out variables;
the cursor method setinputsizes() was modified to return the list of bind
variables and the cursor method execute() was modified to return the list
of defined variables in the case of a select statement being executed;
these variables have three methods available to them: getvalue([<pos>]) to
get the value of a variable, setvalue(<pos>, <value>) to set its value and
copy(<var>, <src_pos>, <targ_pos>) to copy the value from a variable in a
more efficient manner than setvalue(getvalue())

	Implemented cursor method executemany() which expects a list of
dictionaries for the parameters

	Implemented cursor method callproc()

	Added cursor method prepare() which parses (prepares) the statement for
execution; subsequent execute() or executemany() calls can pass None as the
statement which will imply use of the previously prepared statement; used
for high performance only

	Added cursor method fetchraw() which will perform a raw fetch of the cursor
returning the number of rows thus fetched; this is used to avoid the
overhead of generating result sets; used for high performance only

	Added cursor method executemanyprepared() which is identical to the method
executemany() except that it takes a single parameter which is the number
of times to execute a previously prepared statement and it assumes that the
bind variables already have their values set; used for high performance
only

	Added support for rowid being returned in a select statement

	Added support for comparing dates returned by cx_Oracle

	Integrated patch from Andre Reitz to set the null ok flag in the
description attribute of the cursor

	Integrated patch from Andre Reitz to setup.py to support compilation with
Python 1.5

	Integrated patch from Benjamin Kearns to setup.py to support compilation
on Cygwin

Version 2.4 (January 2002)

	String variables can now be made any length (previously restricted to the
64K limit imposed by Oracle for default binding); use the type
cx_Oracle.LONG_STRING as the parameter to setinputsizes() for binding in
string values larger than 4000 bytes.

	Raw and long raw columns are now supported; use the types cx_Oracle.BINARY
and cx_Oracle.LONG_BINARY as the parameter to setinputsizes() for binding
in values of these types.

	Functions DateFromTicks(), TimeFromTicks() and TimestampFromTicks()
are now implemented.

	Function cursor.setoutputsize() implemented

	Added the ability to bind arrays as out parameters to procedures; use the
format [cx_Oracle.<DataType>, <NumElems>] as the input to the function
setinputsizes() for binding arrays

	Discovered from the Oracle 8.1.6 version of the documentation of the OCI
libraries, that the size of the memory location required for the precision
variable is larger than the printed documentation says; this was causing a
problem with the code on the Sun platform.

	Now support building RPMs for Linux.

Version 2.3 (October 2001)

	Incremental performance enhancements (dealing with reusing cursors and
bind handles)

	Ensured that arrays of integers with a single float in them are all
treated as floats, as suggested by Martin Koch.

	Fixed code dealing with scale and precision for both defining a numeric
variable and for providing the cursor description; this eliminates the
problem of an underflow error (OCI-22054) when retrieving data with
non-zero scale.

Version 2.2 (July 2001)

	Upgraded thread safety to level 1 (according to the Python DB API 2.0) as
an internal project required the ability to share the module between
threads.

	Added ability to bind ref cursors to PL/SQL blocks as requested by
Brad Powell.

	Added function write(Value, [Offset]) to LOB variables as requested by
Matthias Kirst.

	Procedure execute() on Cursor objects now permits a value None for the
statement which means that the previously prepared statement will be
executed and any input sizes set earlier will be retained. This was done to
improve the performance of scripts that execute one statement many times.

	Modified module global constants BINARY and DATETIME to point to the
external representations of those types so that the expression
type(var) == cx_Oracle.DATETIME will work as expected.

	Added global constant version to provide means of determining the current
version of the module.

	Modified error checking routine to distinguish between an Oracle error and
invalid handles.

	Added error checking to avoid setting the value of a bind variable to a
value that it cannot support and raised an exception to indicate this fact.

	Added extra compile arguments for the AIX platform as suggested by Jehwan
Ryu.

	Added section to the README to indicate the method for a binary
installation as suggested by Steve Holden.

	Added simple usage example as requested by many people.

	Added HISTORY file to the distribution.

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/cx_Oracle_arch.png
Python

cx_Oracle

Oracle Client libraries

Users Programs Python process Oracle Net Oracle Database

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to cx_Oracle’s documentation!

 		
 Introduction to cx_Oracle

 		
 Architecture

 		
 Features

 		
 Getting Started

 		
 cx_Oracle 7 Installation

 		
 Overview

 		
 Quick Start cx_Oracle Installation

 		
 Oracle Client and Oracle Database Interoperability

 		
 Installing cx_Oracle on Linux

 		
 Install cx_Oracle

 		
 Install Oracle Client

 		
 Installing cx_Oracle RPMs on Oracle Linux

 		
 Installing cx_Oracle on Windows

 		
 Install cx_Oracle

 		
 Install Oracle Client

 		
 Installing cx_Oracle on macOS

 		
 Install Python

 		
 Install cx_Oracle

 		
 Install Oracle Instant Client

 		
 Installing cx_Oracle without Internet Access

 		
 Install Using GitHub

 		
 Install Using Source from PyPI

 		
 Upgrading from Older Versions

 		
 Installing cx_Oracle 5.3

 		
 Troubleshooting

 		
 Connecting to Oracle Database

 		
 Establishing Database Connections

 		
 Closing Connections

 		
 Oracle Environment Variables

 		
 Optional Oracle Configuration Files

 		
 Optional Oracle Net Configuration Files

 		
 Optional Oracle Client Configuration Files

 		
 Connection Strings

 		
 Easy Connect Syntax for Connection Strings

 		
 Oracle Net Connect Descriptor Strings

 		
 Net Service Names for Connection Strings

 		
 JDBC and Oracle SQL Developer Connection Strings

 		
 Connection Pooling

 		
 Session CallBacks for Setting Pooled Connection State

 		
 Heterogeneous and Homogeneous Connection Pools

 		
 Database Resident Connection Pooling (DRCP)

 		
 Connecting Using Proxy Authentication

 		
 Connecting Using External Authentication

 		
 Using an Oracle Wallet for External Authentication

 		
 Operating System Authentication

 		
 Privileged Connections

 		
 Starting and Stopping Oracle Database

 		
 Securely Encrypting Network Traffic to Oracle Database

 		
 Resetting Passwords

 		
 Connecting to Sharded Databases

 		
 SQL Execution

 		
 SQL Queries

 		
 Fetch Methods

 		
 Closing Cursors

 		
 Tuning Fetch Performance

 		
 Query Column Metadata

 		
 Fetch Data Types

 		
 Changing Fetched Data Types with Output Type Handlers

 		
 Fetched Number Precision

 		
 Changing Query Results with Outconverters

 		
 Scrollable Cursors

 		
 Limiting Rows

 		
 Querying Corrupt Data

 		
 INSERT and UPDATE Statements

 		
 Inserting NULLs

 		
 PL/SQL Execution

 		
 PL/SQL Stored Procedures

 		
 PL/SQL Stored Functions

 		
 Anonymous PL/SQL Blocks

 		
 Using DBMS_OUTPUT

 		
 Implicit results

 		
 Edition-Based Redefinition (EBR)

 		
 Using Bind Variables

 		
 Binding By Name or Position

 		
 Bind Direction

 		
 Binding Null Values

 		
 Binding ROWID Values

 		
 DML RETURNING Bind Variables

 		
 LOB Bind Variables

 		
 REF CURSOR Bind Variables

 		
 Binding PL/SQL Collections

 		
 Binding PL/SQL Records

 		
 Binding Spatial Datatypes

 		
 Changing Bind Data Types using an Input Type Handler

 		
 Binding Multiple Values to a SQL WHERE IN Clause

 		
 Binding Column and Table Names

 		
 Using CLOB and BLOB Data

 		
 Simple Insertion of LOBs

 		
 Fetching LOBs as Strings and Bytes

 		
 Streaming LOBs (Read)

 		
 Streaming LOBs (Write)

 		
 Temporary LOBs

 		
 Working with the JSON Data Type

 		
 Simple Oracle Document Access (SODA)

 		
 Overview

 		
 SODA Example

 		
 Working with XMLTYPE

 		
 Batch Statement Execution and Bulk Loading

 		
 Batch Execution of SQL

 		
 Batch Execution of PL/SQL

 		
 Handling Data Errors

 		
 Identifying Affected Rows

 		
 DML RETURNING

 		
 Predefining Memory Areas

 		
 Loading CSV Files into Oracle Database

 		
 Exception Handling

 		
 Oracle Advanced Queuing

 		
 Creating a Queue

 		
 Enqueuing Messages

 		
 Dequeuing Messages

 		
 Using Object Queues

 		
 Changing Queue and Message Options

 		
 Bulk Enqueue and Dequeue

 		
 Continuous Query Notification

 		
 Requirements

 		
 Creating a Subscription

 		
 Registering Queries

 		
 Transaction Management

 		
 Autocommitting

 		
 Explicit Transactions

 		
 Characters Sets and National Language Support (NLS)

 		
 Setting the Client Character Set

 		
 Character Set Example

 		
 Finding the Database and Client Character Set

 		
 High Availability with cx_Oracle

 		
 General HA Recommendations

 		
 Network Configuration

 		
 Fast Application Notification (FAN)

 		
 Application Continuity (AC)

 		
 Transaction Guard

 		
 Tracing SQL and PL/SQL Statements

 		
 Subclass Connections

 		
 Oracle Database End-to-End Tracing

 		
 Low Level SQL Tracing in cx_Oracle

 		
 Module Interface

 		
 Constants

 		
 General

 		
 Advanced Queuing: Delivery Modes

 		
 Advanced Queuing: Dequeue Modes

 		
 Advanced Queuing: Dequeue Navigation Modes

 		
 Advanced Queuing: Dequeue Visibility Modes

 		
 Advanced Queuing: Dequeue Wait Modes

 		
 Advanced Queuing: Enqueue Visibility Modes

 		
 Advanced Queuing: Message States

 		
 Advanced Queuing: Other

 		
 Connection Authorization Modes

 		
 Database Shutdown Modes

 		
 Event Types

 		
 Operation Codes

 		
 Session Pool Get Modes

 		
 Session Pool Purity

 		
 Subscription Grouping Classes

 		
 Subscription Grouping Types

 		
 Subscription Namespaces

 		
 Subscription Protocols

 		
 Subscription Quality of Service

 		
 Types

 		
 Exceptions

 		
 Exception handling

 		
 Connection Object

 		
 Cursor Object

 		
 Variable Objects

 		
 SessionPool Object

 		
 Subscription Object

 		
 Message Objects

 		
 Message Table Objects

 		
 Message Row Objects

 		
 Message Query Objects

 		
 LOB Objects

 		
 Object Type Objects

 		
 Object Objects

 		
 Advanced Queuing (AQ)

 		
 Queues

 		
 Dequeue Options

 		
 Enqueue Options

 		
 Message Properties

 		
 Soda Document Class

 		
 SODA Database Object

 		
 SODA Collection Object

 		
 SODA Document Object

 		
 SODA Document Cursor Object

 		
 SODA Operation Object

